8 research outputs found

    Anoxia- and hypoxia-induced expression of LDH-A* in the Amazon Oscar, Astronotus crassipinis

    Get PDF
    Adaptation or acclimation to hypoxia occurs via the modulation of physiologically relevant genes, such as erythropoietin, transferrin, vascular endothelial growth factor, phosphofructokinase and lactate dehydrogenase A. In the present study, we have cloned, sequenced and examined the modulation of the LDH-A gene after an Amazonian fish species, Astronotus crassipinis (the Oscar), was exposed to hypoxia and anoxia. In earlier studies, we have discovered that adults of this species are extremely tolerant to hypoxia and anoxia, while the juveniles are less tolerant. Exposure of juveniles to acute hypoxia and anoxia resulted in increased LDH-A gene expression in skeletal and cardiac muscles. When exposed to graded hypoxia juveniles show decreased LDH-A expression. In adults, the levels of LDH-A mRNA did not increase in hypoxic or anoxic conditions. Our results demonstrate that, when given time for acclimation, fish at different life-stages are able to respond differently to survive hypoxic episodes

    Ion fluxes and hematological parameters of two teleosts from the Rio Negro, Amazon, exposed to hypoxia

    Get PDF
    The aim of this study was to describe the effect of hypoxia on whole body ion fluxes and hematological parameters in two Amazonian teleosts: Serrasalmus eigenmanni and Metynnis hypsauchen. The increase of Na+ and Cl- effluxes on M. hypsauchen exposed to hypoxia may be related to an increase of gill ventilation and effective respiratory surface area, to avoid a reduction in the oxygen uptake, and/or with the decrease of pHe, that could inhibit Na+ and Cl- transporters and, therefore, reduce influx of these ions. Effluxes of Na+ and Cl- were lower in hypoxia than in normoxia for S. eigenmanni, possibly because in hypoxia this species would reduce gill ventilation and oxygen uptake, which would lead to a decrease of gill ion efflux and, consequently, reducing ion loss. The increase on hematocrit (Ht) during hypoxia in M. hypsauchen probably was caused by an increase of the red blood cell volume (MCV). For S. eigenmanni the increase on glucose possibly results from the usage of glucose reserve mobilization. Metynnis hypsauchen showed to be more sensitive to hypoxia than Serrasalmus eigenmanni, since the first presented more significant alterations on these osmoregulatory and hematological parameters. Nevertheless, the alterations observed for both species are strategies adopted by fishes to preserve oxygen supply to metabolizing tissues during exposure to hypoxia

    Ion fluxes and hematological parameters of two teleosts from the Rio Negro, Amazon, exposed to hypoxia

    No full text
    The aim of this study was to describe the effect of hypoxia on whole body ion fluxes and hematological parameters in two Amazonian teleosts: Serrasalmus eigenmanni and Metynnis hypsauchen. The increase of Na+ and Cl- effluxes on M. hypsauchen exposed to hypoxia may be related to an increase of gill ventilation and effective respiratory surface area, to avoid a reduction in the oxygen uptake, and/or with the decrease of pHe, that could inhibit Na+ and Cl- transporters and, therefore, reduce influx of these ions. Effluxes of Na+ and Cl- were lower in hypoxia than in normoxia for S. eigenmanni, possibly because in hypoxia this species would reduce gill ventilation and oxygen uptake, which would lead to a decrease of gill ion efflux and, consequently, reducing ion loss. The increase on hematocrit (Ht) during hypoxia in M. hypsauchen probably was caused by an increase of the red blood cell volume (MCV). For S. eigenmanni the increase on glucose possibly results from the usage of glucose reserve mobilization. Metynnis hypsauchen showed to be more sensitive to hypoxia than Serrasalmus eigenmanni, since the first presented more significant alterations on these osmoregulatory and hematological parameters. Nevertheless, the alterations observed for both species are strategies adopted by fishes to preserve oxygen supply to metabolizing tissues during exposure to hypoxia
    corecore