6 research outputs found

    Spectroscopic investigations on Polypropylene-Carbon Nanofiber Composites: I. Raman and Electron Spin Resonance Spectroscopy

    Get PDF
    Isotactic polypropylene-vapor grown carbon nanofiber composites containing various fractions of carbon nanofibers, ranging from 0 to 20 wt %, have been prepared. Raman spectroscopy was used to analyze the effect of the dispersion of carbon nanofibers within polypropylene and the interactions between carbon nanofibers and macromolecular chains. The as-recorded Raman spectra have been successfully fitted by a linear convolution of Lorentzian lines. Changes of the Raman lines parameters (position, intensity, width, and area) of polypropylene and carbon nanofibers were analyzed in detail. The Raman spectra of the polymeric matrix—at low concentrations of nanofibers—show important modifications that indicate strong interactions between carbon nanofibers and the polymeric matrix reflecting by vibrational dephasing of macromolecular chains. The Raman spectrum of carbon nanofibers is sensitive to the loading with carbon nanofibers, showing changes of the resonance frequencies, amplitudes, and width for both D- and G-bands. Raman data reveals the increase of the disorder, as the concentration of carbon nanofibers is increased. The presence of the typical ESR line assigned to conducting electrons delocalized over carbon nanofibers is confirmed and the presence of a spurious magnetic line due to catalyst’s residues is reported

    Polycarbonate-carbon nanofibers composites: an electron spin resonance study

    No full text
    Electron spin resonance investigations on polycarbonate loaded with various amounts of carbon nanofibers (ranging from 0% to 10%) are reported. A complex resonance spectrum was recorded. The spectrum was assigned to the convolution of resonance lines originating from the conducting electrons delocalized over the metallic domains of nanotubes, of free radicals generated during the polymer processing, and of catalyst's traces. The shape of resonance spectra originating from conducting electrons delocalized over the metallic domains of nanotubes was accurately fitted by a Lorentzian-like shape. The correlation between the measured DC resistivity of these samples and the relevant parameters of the resonance spectrum (line width, g-factor, and ratio between the amplitude of the absorption and dispersion components) was investigated. The saturation of the ESR line, at room temperature is reported

    Fourier transform infrared spectroscopy and wide-angle X-ray scattering: Investigations on polypropylene–vapor-grown carbon nanofiber composites

    Get PDF
    Fourier transform infrared (FTIR) spectroscopy and wide-angle X-ray scattering (WAXS) investigations of isotactic polypropylene (iPP)–vapor-grown carbon nanofiber (VGCNF) composites containing various amounts of VGCNFs ranging between 0 and 20 wt %. are reported. The FTIR investigations were focused on the regularity bands of iPP. The FTIR data indicated a drop in the isotac­ticity index as the concentration of nanofibers was increased; this suggested a decrease in the crystallinity. WAXS measurements revealed a dominating α1 phase, with a small admixture of γ phase or mesophase. The loading of the polymeric matrix with car­bon nanofibers (CNFs) did not induce significant changes in the morphology of the polymeric matrix. A weak decrease in the size of α crystallites upon loading of CNFs was noticed. The experimental data obtained by FTIR spectroscopy supported the WAXS data. Spectroscopic data (a drop in the isotacticity index as estimated by FTIR spectroscopy and the ratio between the crystalline and total areas of WAXS lines assigned to iPP) failed to confirm the enhancement of the degree of crystallinity of polypropylene upon loading by nanofibers. However, whereas both techniques can identify with a high accuracy vibrations in ordered domains (FTIR spectroscopy) and the crystalline structure, including the lattice parameters and the size of crystallites (WAXS), difficulties in the correct assessment of the baseline and of amorphous components may result in important errors (typically \u3e5%) in the esti­mation of the degree of crystallinity of the polymeric component

    Raman Spectroscopy of Isotactic Polypropylene-Halloysite Nanocomposites

    Get PDF
    Raman spectroscopy investigations on nanocomposites obtained by dispersing halloysite within isotactic polypropylene are reported. A detailed analysis of the modifications of the regularity band associated to the polymeric matrix is presented. The Raman lines assigned to the polymeric matrix are broadened and weakened as the loading with halloysite is increased. The analysis of Raman lines indicates that the polymeric matrix becomes less crystalline upon the loading with halloysite and that the nanofiller is experiencing a weak dehydration upon dispersion within the polymeric matrix, probably due to the related thermal processing used to achieve the dispersion of halloysite

    Isotactic polypropylene–vapor grown carbon nanofibers composites: Electrical properties

    No full text
    Nanocomposites have been obtained by dispersing various amounts of vapor grown carbon nanofibers within isotactic polypropylene. Thermal investigations done by differential scanning calorimetry and dynamic mechanical analysis revealed the effect of the vapor grown carbon nanofibers on the melting, crystallization, α, and β relaxations. Direct current electrical features of these nanocomposites have been investigated and related to the thermal features of these nanocomposites. The effect of the loading with carbon nanofibers on the electrical properties of these nanocomposites is discussed within the percolation theory. The percolation threshold was estimated at about 5.5% wt carbon nanofibers. The temperature dependence of the direct current conductivity is analyzed in detail and it is concluded that the electronic hopping is the dominant transport mechanism. A transition from one-dimensional hopping towards a three-dimensional hopping was noticed as the concentration of carbon nanofibers was increased from 10% wt to 20% wt carbon nanofiber. The possibility of a differential negative resistivity is suggested

    Polyvinylchloride-Single-Walled Carbon Nanotube Composites: Thermal and Spectroscopic Properties

    Get PDF
    Nanocomposites of single-walled carbon nanotubes dispersed within polyvinylchloride have been obtained by using the solution path. High-power sonication was utilized to achieve a good dispersion of carbon nanotubes. Thermogravimetric analysis revealed that during the synthesis, processing, or thermal analysis of these nanocomposites the released chlorine is functionalizing the single-walled carbon nanotubes. The loading of polyvinylchloride by single-walled carbon nanotubes increases the glass transition temperature of the polymeric matrix, demonstrating the interactions between macromolecular chains and filler. Wide Angle X-Ray Scattering data suggested a drop of the crystallite size and of the degree of crystallinity as the concentration of single-walled carbon nanotubes is increased. The in situ chlorination and amorphization of nanotube during the synthesis (sonication step) is confirmed by Raman spectroscopy
    corecore