45 research outputs found

    Extracellular ATP is increased by release of ATP-loaded microparticles triggered by nutrient deprivation

    Get PDF
    Rationale: Caloric restriction improves the efficacy of anti-cancer therapy. This effect is largely dependent on the increase of the extracellular ATP concentration in the tumor microenvironment (TME). Pathways for ATP release triggered by nutrient deprivation are largely unknown. Methods: The extracellular ATP (eATP) concentration was in vivo measured in the tumor microenvironment of B16F10-inoculated C57Bl/6 mice with the pmeLuc probe. Alternatively, the pmeLuc-TG-mouse was used. Caloric restriction was in vivo induced with hydroxycitrate (HC). B16F10 melanoma cells or CT26 colon carcinoma cells were in vitro exposed to serum starvation to mimic nutrient deprivation. Energy metabolism was monitored by Seahorse. Microparticle release was measured by ultracentrifugation and by Nanosight. Results: Nutrient deprivation increases eATP release despite the dramatic inhibition of intracellular energy synthesis. Under these conditions oxidative phosphorylation was dramatically impaired, mitochondria fragmented and glycolysis and lactic acid release were enhanced. Nutrient deprivation stimulated a P2X7-dependent release of ATP-loaded, mitochondria-containing, microparticles as well as of naked mitochondria. Conclusions: Nutrient deprivation promotes a striking accumulation of eATP paralleled by a large release of ATP-laden microparticles and of naked mitochondria. This is likely to be a main mechanism driving the accumulation of eATP into the TME

    Italian natural history museums on the verge of collapse?

    Get PDF
    The Italian natural history museums are facing a critical situation, due to the progressive loss of scientific relevance, decreasing economic investments, and scarcity of personnel. This is extremely alarming, especially for ensuring the long-term preservation of the precious collections they host. Moreover, a commitment in fieldwork to increase scientific collections and concurrent taxonomic research are rarely considered priorities, while most of the activities are addressed to public events with political payoffs, such as exhibits, didactic meetings, expositions, and talks. This is possibly due to the absence of a national museum that would have better steered research activities and overall concepts for collection management. We here propose that Italian natural history museums collaborate to instate a “metamuseum”, by establishing a reciprocal interaction network aimed at sharing budgetary and technical resources, which would assure better coordination of common long-term goals and scientific activities

    A serum proteome signature to predict mortality in severe COVID-19 patients.

    Get PDF
    Here, we recorded serum proteome profiles of 33 severe COVID-19 patients admitted to respiratory and intensive care units because of respiratory failure. We received, for most patients, blood samples just after admission and at two more later time points. With the aim to predict treatment outcome, we focused on serum proteins different in abundance between the group of survivors and non-survivors. We observed that a small panel of about a dozen proteins were significantly different in abundance between these two groups. The four structurally and functionally related type-3 cystatins AHSG, FETUB, histidine-rich glycoprotein, and KNG1 were all more abundant in the survivors. The family of inter-α-trypsin inhibitors, ITIH1, ITIH2, ITIH3, and ITIH4, were all found to be differentially abundant in between survivors and non-survivors, whereby ITIH1 and ITIH2 were more abundant in the survivor group and ITIH3 and ITIH4 more abundant in the non-survivors. ITIH1/ITIH2 and ITIH3/ITIH4 also showed opposite trends in protein abundance during disease progression. We defined an optimal panel of nine proteins for mortality risk assessment. The prediction power of this mortality risk panel was evaluated against two recent COVID-19 serum proteomics studies on independent cohorts measured in other laboratories in different countries and observed to perform very well in predicting mortality also in these cohorts. This panel may not be unique for COVID-19 as some of the proteins in the panel have previously been annotated as mortality markers in aging and in other diseases caused by different pathogens, including bacteria

    Role of the purinergic P2Z receptor in spontaneous cell death in j774 macrophage cultures

    No full text
    J774 mouse macrophages express an ionotropic receptor gated by extracellular ATP. Activation of this receptor, currently named purinergic P2Z, causes transmembrane ion fluxes, plasma membrane depolarization, cell swelling and eventual cell death. The physiological role of this receptor is as yet unknown. In the present report we show that macrophage cell clones that hypo-express the P2Z receptor showed a very low degree of spontaneous cell death in culture, while hyper-expressing clones were exceedingly susceptible to cell death. To further support a role for ATP receptors in spontaneous cell death, addition to the macrophage cell cultures of oxidized ATP, a selective inhibitor of ionotropic purinergic receptors, or the ATP-hydrolysing enzyme apyrase, also reduced spontaneous death

    P2X(7) Receptor and Polykarion Formation

    No full text
    Cell fusion is a central phenomenon during the immune response that leads to formation of large elements called multinucleated giant cells (MGCs) of common occurrence at sites of granulomatous inflammation. We have previously reported on the involvement in this event of a novel receptor expressed to high level by mononuclear phagocytes, the purinergic P2X(7) receptor. Herein, we show that blockade of this receptor by a specific monoclonal antibody prevents fusion in vitro. In contrast, cell fusion is stimulated by addition of enzymes that destroy extracellular ATP (i.e., apyrase or hexokinase). Experiments performed with phagocytes selected for high (P2X(7) hyper) or low (P2X(7) hypo) P2X(7) expression show that fusion only occurs between P2X(7) hyper/P2X(7) hyper and not between P2X(7) hyper/P2X(7) hypo or P2X(7) hypo/P2X(7) hypo. During MGCs formation we detected activation of caspase 3, an enzyme that is powerfully stimulated by P2X(7). Finally, we observed that during MGCs formation, the P2X(7) receptor is preferentially localized at sites of cell-to-cell contact. These findings support the hypothesis originally put forward by our group that the P2X(7) receptor participates in multinucleated giant cell formation

    The P2X7 receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism

    No full text
    P2X7 is a receptor for extracellular nucleotides expressed by different normal cell types. P2X7 triggering may result in stimulation of cell proliferation or induction of apoptosis depending on the level of activation. P2X7 expression and function in B-cell chronic lymphocytic leukemia has been shown to correlate with disease severity. Here, we have asked the question of whether P2X7 is expressed and functional in neuroblastoma, a pediatric tumor of neuroectodermal origin. P2X7 was detected both in primary neuroblastoma tumors and in neuroblastoma cell lines. In the latter cells, P2X7 stimulation by ATP was found to trigger (a) increased intracellular calcium fluxes, (b) plasma membrane depolarization, and (c) formation of a nonselective plasma membrane permeable pore. In contrast to the usual response typically observed in the majority of cell types, P2X7 in vitro stimulation did not induce caspase-3 activation or apoptosis of neuroblastoma cells but rather supported their proliferation. Growth stimulation was partially due to substance P release from nucleotide-activated neuroblastoma cells. Therefore, neuroblastoma cells seem to have molded P2X7 function to their advantage in two ways (i.e., by silencing P2X7 proapoptotic activity and by coupling P2X7 stimulation to release of locally acting trophic factors). ©2006 American Association for Cancer Research
    corecore