153 research outputs found

    Identification of novel vascular markers through gene expression profiling of tumor-derived endothelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Targeting tumor angiogenesis and vasculature is a promising strategy for the inhibition of tumor growth and dissemination. Evidence suggests that tumor vasculature expresses unique markers that distinguish it from normal vasculature. Our efforts focused on the molecular characterization of endothelial cells (EC) in the search for selective markers of tumor vasculature that might be helpful for the development of effective therapeutic approaches.</p> <p>Results</p> <p>We investigated by microarray analysis the gene expression profiles of EC purified and cultured from tumor (ovarian carcinoma [HOC-EC]) and normal (human adrenal gland [HA-EC]) tissue specimens. We found distinct transcriptional features characterizing the EC of different origin, and identified 158 transcripts highly expressed by HOC-EC. We analyzed four of these genes, ADAM23, FAP, GPNMB and PRSS3, which were not previously known to be expressed by endothelium. <it>In vitro </it>experiments confirmed the higher expression of the selected genes in tumor-derived endothelium with no expression in tumor cells. <it>In vivo </it>investigation by <it>in situ </it>hybridization established that ADAM23, GPNMB and PRSS3 expression is localized on blood vessels of human cancer specimens.</p> <p>Conclusion</p> <p>These findings elucidate some of the molecular features of the tumor endothelium. Comparative transcriptomic analysis allowed us to determine molecular differences of tumor and normal tissue-derived endothelium and to identify novel markers that might be exploited to selectively target tumor vasculature.</p

    CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential

    Get PDF
    AbstractOur interest in chronic lymphocytic leukemia (CLL) derives primarily from the exploitation of human diseases as strategic models for defining the in vivo biological roles of CD38. Using this model, we showed that CD38 triggers robust proliferation/survival signals modulated through the interactions with the CD31 ligand expressed by nurselike cells and by the stromal/endothelial components. By analyzing a cohort of 56 patients with clinically and molecularly characterized CLL, we show that (1) patients with CD38+/ZAP-70+ are characterized by enhanced migration toward Stromal derived factor-1α (SDF-1α)/CXCL12; (2) CD38 ligation leads to tyrosine phosphorylation of ZAP-70, showing that these markers are functionally linked; (3) ZAP-70 represents a limiting factor for the CD38 pathway in the CLL context, as shown by studying CD38-mediated signal transduction in 26 molecularly characterized patients; and (4) the CLL subgroup of patients defined on the basis of migratory potential is marked by a specific genetic signature, with a significant number of differentially expressed genes being involved in cell-cell interactions and movement. Altogether, the results of this work provide biological evidence for why the combined analysis of CD38 and ZAP-70 expression as determined in several clinical trials results in more dependable identification of patients with CLL who have aggressive disease

    A novel prostate cell type-specific gene signature to interrogate prostate tumor differentiation status and monitor therapeutic response (running title: Phenotypic classification of prostate tumors)

    Get PDF
    In this study, we extracted prostate cell-specific gene sets (metagenes) to define the epithelial differentiation status of prostate cancers and, using a deconvolution-based strategy, interrogated thousands of primary and metastatic tumors in public gene profiling datasets. We identified a subgroup of primary prostate tumors with low luminal epithelial enrichment (LumElow). LumElow tumors were associated with higher Gleason score and mutational burden, reduced relapse-free and overall survival, and were more likely to progress to castration-resistant prostate cancer (CRPC). Using discriminant function analysis, we generate a predictive 10-gene classifier for clinical implementation. This mini-classifier predicted with high accuracy the luminal status in both primary tumors and CRPCs. Immunohistochemistry for COL4A1, a low- luminal marker, sustained the association of attenuated luminal phenotype with metastatic disease. We found also an association of LumE score with tumor phenotype in genetically engineered mouse models (GEMMs) of prostate cancer. Notably, the metagene approach led to the discovery of drugs that could revert the low luminal status in prostate cell lines and mouse models. This study describes a novel tool to dissect the intrinsic heterogeneity of prostate tumors and provide predictive information on clinical outcome and treatment response in experimental and clinical samples
    corecore