17 research outputs found
Mechanism and specificity of pentachloropseudilin-mediated inhibition of myosin motor activity.
Here, we report that the natural compound pentachloropseudilin (PClP) acts as a reversible and allosteric inhibitor of myosin ATPase and motor activity. IC(50) values are in the range from 1 to 5 μm for mammalian class-1 myosins and greater than 90 μm for class-2 and class-5 myosins, and no inhibition was observed with class-6 and class-7 myosins. We show that in mammalian cells, PClP selectively inhibits myosin-1c function. To elucidate the structural basis for PClP-induced allosteric coupling and isoform-specific differences in the inhibitory potency of the compound, we used a multifaceted approach combining direct functional, crystallographic, and in silico modeling studies. Our results indicate that allosteric inhibition by PClP is mediated by the combined effects of global changes in protein dynamics and direct communication between the catalytic and allosteric sites via a cascade of small conformational changes along a conserved communication pathway
Competition between myosin II and βH-spectrin regulates cytoskeletal tension
Spectrins are membrane cytoskeletal proteins generally thought to function as heterotetramers comprising two α-spectrins and two β-spectrins. They influence cell shape and Hippo signaling, but the mechanism by which they influence Hippo signaling has remained unclear. We have investigated the role and regulation of the Drosophila β-heavy spectrin (βH-spectrin, encoded by the karst gene) in wing imaginal discs. Our results establish that βH-spectrin regulates Hippo signaling through the Jub biomechanical pathway due to its influence on cytoskeletal tension. While we find that α-spectrin also regulates Hippo signaling through Jub, unexpectedly, we find that βH-spectrin localizes and functions independently of α-spectrin. Instead, βH-spectrin co-localizes with and reciprocally regulates and is regulated by myosin. In vivo and in vitro experiments support a model in which βH-spectrin and myosin directly compete for binding to apical F-actin. This competition can explain the influence of βH-spectrin on cytoskeletal tension and myosin accumulation. It also provides new insight into how βH-spectrin participates in ratcheting mechanisms associated with cell shape change
Crystallization and preliminary crystallographic analysis of cysteine synthase from Entamoeba histolytica
A preliminary crystallographic study of cysteine synthase, a major enzyme in the cysteine-biosynthesis pathway, from the amoebic pathogen E. histolytica
Unusual Anchor of a Motor Complex (MyoD-MLC2) to the Plasma Membrane of Toxoplasma gondii
Toxoplasma gondii possesses 11 rather atypical myosin heavy chains. The only myosin light chain described to date is MLC1, associated with myosin A, and contributing to gliding motility. In this study, we examined the repertoire of calmodulin-like proteins in Apicomplexans, identified six putative myosin light chains and determined their subcellular localization in T. gondii and Plasmodium falciparum. MLC2, only found in coccidians, is associated with myosin D via its calmodulin (CaM)-like domain and anchored to the plasma membrane of T. gondii via its N-terminal extension. Molecular modeling suggests that the MyoD-MLC2 complex is more compact than the reported structure of Plasmodium MyoA-myosin A tail-interacting protein (MTIP) complex. Anchorage of this MLC2 to the plasma membrane is likely governed by palmitoylation