71 research outputs found

    A Novel Fog Computing Approach for Minimization of Latency in Healthcare using Machine Learning

    Get PDF
    In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices which becomes very difficult to handle only through the cloud. Fog computing technology emerges as an intelligent solution and uses a distributed environment to operate. The objective of the paper is latency minimization in e-healthcare through fog computing. Therefore, in IoT multimedia data transmission, the parameters such as transmission delay, network delay, and computation delay must be reduced as there is a high demand for healthcare multimedia analytics. Fog computing provides processing, storage, and analyze the data nearer to IoT and end-users to overcome the latency. In this paper, the novel Intelligent Multimedia Data Segregation (IMDS) scheme using Machine learning (k-fold random forest) is proposed in the fog computing environment that segregates the multimedia data and the model used to calculate total latency (transmission, computation, and network). With the simulated results, we achieved 92% as the classification accuracy of the model, an approximately 95% reduction in latency as compared with the pre-existing model, and improved the quality of services in e-healthcare

    Freeway Traffic Incident Detection from Cameras: A Semi-Supervised Learning Approach

    Get PDF
    Early detection of incidents is a key step to reduce incident related congestion. State Department of Transportation (DoTs) usually install a large number of Close Circuit Television (CCTV) cameras in freeways for traffic surveillance. In this study, we used semi-supervised techniques to detect traffic incident trajectories from the cameras. Vehicle trajectories are identified from the cameras using state-of-the-art deep learning based You Look Only Once (YOLOv3) classifier and Simple Online Realtime Tracking (SORT) is used for vehicle tracking. Our proposed approach for trajectory classification is based on semi-supervised parameter estimation using maximum-likelihood (ML) estimation. The ML based Contrastive Pessimistic Likelihood Estimation (CPLE) attempts to identify incident trajectories from the normal trajectories. We compared the performance of CPLE algorithm to traditional semi-supervised techniques Self Learning and Label Spreading, and also to the classification based on the corresponding supervised algorithm. Results show that approximately 14% improvement in trajectory classification can be achieved using the proposed approach

    Combination therapy in the treatment of Stevens-Johnson syndrome/toxic epidermal necrolysis: a case series and review of literature

    Get PDF
    Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are life-threatening disease of skin and mucous membrane that are mostly caused by drugs. Many studies have focussed on treatment that modify immunologic responses like corticosteroid, IVIG, cyclosporine, biologics like TNF-α inhibitors etanercept, infliximab etc. But there are few studies available on using two immunomodifier drugs simultaneously. However, no standardized treatment protocol has been established for SJS/TEN patients. We present a case-series of 10 SJS-TEN patients treated with both systemic corticosteroid and cyclosporine. We provide a review of literature on individual systemic corticosteroid, cyclosporine and also simultaneous use of both agents for SJS/TEN, including various outcome measures-stabilization, mortality rate, hospital length of stay and comparison to other systemic agents

    An Intelligent Trust Cloud Management Method for Secure Clustering in 5G enabled Internet of Medical Things

    Full text link
    5G edge computing enabled Internet of Medical Things (IoMT) is an efficient technology to provide decentralized medical services while Device-to-device (D2D) communication is a promising paradigm for future 5G networks. To assure secure and reliable communication in 5G edge computing and D2D enabled IoMT systems, this paper presents an intelligent trust cloud management method. Firstly, an active training mechanism is proposed to construct the standard trust clouds. Secondly, individual trust clouds of the IoMT devices can be established through fuzzy trust inferring and recommending. Thirdly, a trust classification scheme is proposed to determine whether an IoMT device is malicious. Finally, a trust cloud update mechanism is presented to make the proposed trust management method adaptive and intelligent under an open wireless medium. Simulation results demonstrate that the proposed method can effectively address the trust uncertainty issue and improve the detection accuracy of malicious devices

    A novel green IoT-based pay-as-you-go smart parking system

    Get PDF
    The better management of resources and the potential improvement in traffic congestion via reducing the orbiting time for parking spaces is crucial in a smart city, particularly those with an uneven correlation between the increase in vehicles and infrastructure. This paper proposes and analyses a novel green IoT-based Pay-As-You-Go (PAYG) smart parking system by utilizing unused garage parking spaces. The article also presents an intelligent system that offers the most favorable prices to its users by matching private garages’ pricing portfolio with a garage’s current demand. Malta, the world’s fourth-most densely populated country, is considered as a case of a smart city for the implementation of the proposed approach. The results obtained confirm that apart from having a high potential system in such countries, the pricing generated correctly forecasts the demand for a particular garage at a specific time of the day and year. The proposed PAYG smart parking system can effectively contribute to the macro solution to traffic congestion by encouraging potential users to use the system’s services and reducing the orbiting time for parking.peer-reviewe

    Quantifying vehicle control from physiology in type 1 diabetes

    Get PDF
    Objective: Our goal is to measure real-world effects of at-risk driver physiology on safety-critical tasks like driving by monitoring driver behavior and physiology in real-time. Drivers with type 1 diabetes (T1D) have an elevated crash risk that is linked to abnormal blood glucose, particularly hypoglycemia. We tested the hypotheses that (1) T1D drivers would have overall impaired vehicle control behavior relative to control drivers without diabetes, (2) At-risk patterns of vehicle control in T1D drivers would be linked to at-risk, in-vehicle physiology, and (3) T1D drivers would show impaired vehicle control with more recent hypoglycemia prior to driving. Methods: Drivers (18 T1D, 14 control) were monitored continuously (4 weeks) using in-vehicle sensors (e.g., video, accelerometer, speed) and wearable continuous glucose monitors (CGMs) that measured each T1D driver’s real-time blood glucose. Driver vehicle control was measured by vehicle acceleration variability (AV) across lateral (AVY, steering) and longitudinal (AVX, braking/accelerating) axes in 45-second segments (N = 61,635). Average vehicle speed for each segment was modeled as a covariate of AV and mixed-effects linear regression models were used. Results: We analyzed 3,687 drives (21,231 miles). T1D drivers had significantly higher overall AVX, Y compared to control drivers (BX = 2.5 × 10−2 BY = 1.6 × 10−2, p \u3c 0.01)—which is linked to erratic steering or swerving and harsh braking/accelerating. At-risk vehicle control patterns were particularly associated with at-risk physiology, namely hypo- and hyperglycemia (higher overall AVX,Y). Impairments from hypoglycemia persisted for hours after hypoglycemia resolved, with drivers who had hypoglycemia within 2–3 h of driving showing higher AVX and AVY. State Department of Motor Vehicle records for the 3 years preceding the study showed that at-risk T1D drivers accounted for all crashes (N = 3) and 85% of citations (N = 13) observed. Conclusions: Our results show that T1D driver risk can be linked to real-time patterns of at-risk driver physiology, particularly hypoglycemia, and driver risk can be detected during and prior to driving. Such naturalistic studies monitoring driver vehicle controls can inform methods for early detection of hypoglycemia-related driving risks, fitness to drive assessments, thereby helping to preserve safety in at-risk drivers with diabetes

    Guest editorial : intelligent ubiquitous computing and advanced learning systems for biomedical engineering

    Get PDF
    The health monitoring for disease diagnosis and prognosis in a desired smart medical structure is realized by interpreting the health data. The advances in sensor technologies and biomedical data acquisition tools have led to a new era of big data, where different sensors collect massive amounts of medical data every day. This Special Issue explores the latest development in emerging technologies of biomedical engineering, including big medical data, artificial intelligence, cloud/fog computing, federated learning, ubiquitous computing and communication, internet of things, wireless technologies, and security and privacy. The biological wearable sensors can enhance the decision-making and early disease diagnosis processes by intelligently investigating and collecting large amounts of biomedical data (i.e. big health data). Hence, there is a need for scalable advanced learning, and intelligent algorithms that lead to reliable and interoperable solutions to make effective decisions in emergency medicine technologies. The optimization algorithms can be used in order to acquire the sensor data from multiple sources for fast and accurate health monitoring.peer-reviewe

    Exploratory data analysis, classification, comparative analysis, case severity detection, and internet of things in COVID-19 telemonitoring for smart hospitals

    Get PDF
    he proportion of COVID-19 patients is significantly expanding around the world. Treatment with serious consideration has become a significant problem. Identifying clinical indicators of succession towards severe conditions is desperately required to empower hazard stratification and optimise resource allocation in the pandemic of COVID-19. Consequently, the classification of severity level is significant for the patient’s triaging. It is required to categorise the severity level as mild, moderate, severe, and critical based on the patients’ symptoms. Various symptomatic parameters may encourage the evaluation of infection seriousness. Likewise, with the rapid spread and transmissibility of COVID-19 patients, it is crucial to utilise telemonitoring schemes for COVID-19 patients. Telemonitoring mediation encourages remote data and information exchange among medicinal services, suppliers, and patients, furthermore, risk mitigation and provision of appropriate medical facilities. This paper provides explorative data analysis of symptoms, comorbidities, and other parameters, comparing different machine learning algorithms for case severity detection. This paper also provides a system (based on the degree of truthfulness) for case severity detection that might be utilised to stratify risk levels for anticipated moderate and severe COVID-19 patients. Finally, we provide a telemonitoring model of COVID-19 patients to ensure the remote and continuous monitoring of case severity progression and appropriate risk mitigation strategies
    • …
    corecore