65 research outputs found

    Pricing reverse mortgages in Spain

    Full text link
    [EN] In Spain, as in other European countries, the continuous ageing of the population creates a need for long-term care services and their financing. However, in Spain the development of this kind of services is still embryonic. The aim of this article is to obtain a calculation method for reverse mortgages in Spain based on the fit and projection of dynamic tables for Spanish mortality, using the Lee and Carter model. Mortality and life expectancy for the next 20 years are predicted using the fitted model, and confidence intervals are obtained from the prediction errors of parameters for the mortality index of the model. The last part of the article illustrates an application of the results to calculate the reverse mortgage model promoted by the Spanish Instituto de Crédito Oficial (Spanish State Financial Agency), for which the authors have developed a computer application.The authors are indebted to Jose Garrido, whose suggestions improved the original manuscript, and to the anonymous referee for his/her valuable comments. This work was partially supported by grants from the MEyC (Ministerio de Educacio´n y Ciencia, Spain), projects MTM2010- 14961 and MTM2008-05152.Debón Aucejo, AM.; Montes, F.; Sala, R. (2013). Pricing reverse mortgages in Spain. European Actuarial Journal. 3:23-43. https://doi.org/10.1007/s13385-013-0071-yS23433Blay-Berrueta D (2007) Sistemas de cofinaciaciación de la dependencia: seguro privado frente a hipoteca inversa. Cuadernos de la Fundación, Fundación Mapfre Estudios, Madrid.Booth H (2006) Demographic forecasting: 1980 to 2005 in review. Int J Forecast 22(3):547–582Booth H, Hyndman R, Tickle L, de Jong P (2006) Lee–Carter mortality forecasting: a multi-country comparison of variants and extensions. Demogr Res 15(9):289–310Booth H, Maindonald J, Smith L (2002) Applying Lee–Carter under conditions of variable mortality decline. Popul Stud 56(3):325–336Booth H, Tickle L (2003) The future aged: new projections of Australia’s ederly population. Popul Stud 22(4):38–44Brouhns N, Denuit M, Keilegom IV (2005) Bootstrapping Poisson log-bilinear model for mortality forecasting. Scand Actuar J 2005(3):212–224Brouhns N, Denuit M, Vermunt J (2002) A Poisson log-bilinear regression approach to the construction of projected lifetables. Insur Math Econ 31(3):373–393Carter L, Lee R (1992) Modeling and forecasting US sex differentials in mortality. Int J Forecast 8(3):393–411Carter L, Prkawetz A (2001) Examining structural shifs in mortality using the Lee–Carter method. Mpidr wp 2001–2007, Center for Demography and Ecology Information, University of Wisconsin-Madison.Chinloy P, Megbolugbe I (1994) Reverse mortgages: contracting and crossover. J Am Real Estate Urban Econ Assoc 22(2):367–386Coale A, Guo G (1989) Revisited regional model life tables at very low levels of mortality. Popul Index 55:613–643Coale A, Kisker E (1990) Defects in data old age mortality in the United States: New procedures for calculating approximately accurate mortality schedules and lifes tables at the highest ages. Asian Pac Popul Forum 4:1–31Cossette H, Delwarde A, Denuit M, Guillot F, Étienne M (2007) Pension plan valuation and mortality projection: a case study with mortality data. N Am Actuar J 11(2):1–34.Costa-Font J (2009) Ageing in place? exploring elderly people’s housing preferences in Spain. Urban Stud 46(2):295–316Costa-Font J (2013) Housing-related well-being in older people: the impact of environmental and financial influences. Urban Stud 50(4):657–673Currie I, Kirkby J, Durban M, Eilers P (2004) Smooth Lee–Carter models and beyond. In: Workshop on Lee–Carter Methods, http://www.ma.hw.ac.uk/~iain/workshop/workshop.html . Accessed 4 Mar 2005Czado C, Delwarde A, Denuit M (2005) Bayesian Poisson log-bilinear mortality projections. Insur Math Econ 36(3):260–284D’Amato V, Haberman S, Piscopo G, Russolillo M (2012) Modelling dependent data for longevity projections. Insur Math Econ 51(3):694–701Davidoff T (2012) Can ‘high costs’ justify weak demand for the home equity conversion mortgage? Technical report, available at SSRNDavidoff T, Welke G (2007) Selection and moral hazard in the reverse mortgage market. Technical report, Haas School of Business, UC BerkeleyDebón A, Montes F, Mateu J, Porcu E, Bevilacqua M (2008) Modelling residuals dependence in dymanic life tables. Comput Stat Data Anal 52(3):3128–3147Debón A, Montes F, Puig F (2008) Modelling and forecasting mortality in Spain. Eur J Oper Res 189(3):624–637Debón A, Montes F, Sala R (2009) Tablas de mortalidad dinámicas. Una aplicación a la hipoteca inversa en España. Fundación ICO. Publicaciones de la Universitat de Valéncia, ValenciaDebón A, Montes F, Martínez-Ruiz F (2011) Statistical methods to compare mortality for a group with non-divergent populations: an application to Spanish regions. Eur Actuar J 1:291–308Delwarde A, Denuit M, Eilers P (2007) Smoothing the Lee–Carter and poisson log-bilinear models for mortality forecasting: a penalized log-likelihood approach. Stat Modell 7(1):29–48Denuit M (2007) Distribution of the random future life expectancies in log-bilinear mortality projections models. Lifetime Data Anal 13(3):381–397Denuit M, Goderniaux A (2004) Closing and projecting lifetables using log-linear models. Mitteilungen. der Schweizerischen Aktuarvereingung 1:29–49Felipe A, Guillén M, Pérez-Marín A (2002) Recent mortality trends in the Spanish population. Br Actuar J 8(4):757–786.Forfar D, McCutcheon J, Wilkie A (1988) On graduation by mathematical formula. J Inst Actuar 115(459):1–149Guillen M, Vidiella-i-Anguera A (2005) Forecasting Spanish natural life expectancy. Risk Anal 25(5):1161–1170Heligman L, Pollard J (1980) The age pattern of mortality. J Inst Actuar 107:49–80Herranz-Gonzalez R (2006) Hipoteca inversa y figuras afines. Informes Portal Mayores 49, IMSERSO, Madrid, http://www.imsersomayores.csic.es/documentos/documentos/herranz-hipoteca-01.pdfHoriuchi S, Wilmoth J (1998) Decelaration in the age pattern of mortality at older ages. Demography 35:391–412Hyndman RJ (2008) Forecast: forecasting functions for time series. R package version 1.11Koissi M, Shapiro A, Hgns G (2006) Evaluating and extending the Lee–Carter model for mortality forecasting confidence interval. Insur Math Econ 38(1):1–20Kutty N (1998) The scope for poverty alleviation among elderly home-owners in the United States through reverse mortgages. Urban Stud 35(1):113–129Lee R (2000) The Lee–Carter method for forecasting mortality, with various extensions and applications. N Am Actuar J 4(1):80–91Lee R, Carter L (1992) Modelling and forecasting US mortality. J Am Stat Assoc 87(419):659–671Lee R, Nault F (1993) Modeling and forecasting provincial mortality in Canada. Montreal world congress of the International Union for Scientific Study of PopulationLee R, Rofman R (1994) Modelación y Proyección de la mortalidad en Chile. Notas Poblacin 22(59):182–213Li N, Lee R (2005) Coherent mortality forecast for a group of populations: an extension of the Lee–Carter method. Demography 42(3):575–593Li S-H, Hardy M, Tan K (2009) Uncertainty in mortality forecasting: an extensin to the classical Lee–Carter approach. Astin Bull 31:137–164Lindbergson M (2001) Mortality among the elderly in Sweden. Scan Actuar J 1:79–94Liu X, Braun WJ (2010) Investigating mortality uncertainty using the block bootstrap. J Probab Stat 2010:385–399McNown R, Rogers A (1989) Forecasting mortality: a parametrized time series aproach. Demography 26(4):645–660McNown R, Rogers A (1992) Forecasting cause-specific mortality using time series methods. Int J Forecast 8(3):413–432Miceli T, Sirmans C (1994) Reverse mortgages and borrower maintenance risk. J Am Real Estate Urban Econ Assoc 22(2):433–450Pedroza C (2006) A bayesian forecasting model: predicting US male mortality. Biostatistics 7(4):530–550Renshaw A, Haberman S (2003) Lee–Carter mortality forecasting: a parallel generalized linear modelling aproach for England and Wales mortality projections. J R Stat Soc C 52(1):119–137Renshaw A, Haberman S (2003) Lee–Carter mortality forecasting with age specific enhancement. Insur Math Econ 33(2):255–272Renshaw A, Haberman S (2003) On the forecasting of mortality reduction factors. Insur Math Econ 32(3):379–401Renshaw A, Haberman S (2006) A cohort-based extension to the Lee–Carter model for mortality reduction factors. Insur Math Econ 38(3):556–570Renshaw A, Haberman S (2008) On simulation-based approaches to risk measurement in mortality with specific reference to poisson Lee–Carter modelling. Insur Math Econ 42(2):797–816Shiller R, Weiss A (2000) Moral hazard in home equity conversion. Real Estate Econ 28(1):1–31Skarr D (2008) Financial planner’s guide to the FHA insured home equity conversion mortgage. J Financ Plan 21(5):68–75Sánchez-Álvarez I, Lpez-Ares S, Quiroga-García R (2007) Diseño de hipotecas inversas en el mercado español. Proyecto 205/05 3, Instituto de Mayores y Servicios SocialesTaffin C (2006) La hipoteca inversa o vitalicia. Informes externos, Asociación Hipotecaria EspañolaThatcher A, Kannisto V, Andreev K (2002) The survivor ratio method for estimating numbers at high ages. Demogr Res 6(1):1–18Thatcher A, Kannisto V, Vaupel J (1998) The force of mortality at ages 80 to 120. Odense University Press, OdenseTuljapurkar S, Li N, Boe C (2000) A universal pattern of mortality decline in the G7 countries. Nature 405(6788):789–792Wang L, Valdez E, Piggott J (2008) Securization of longevity risk in reverse mortgages. N Am Actuar J 12(4):345–370Wilmoth J (1993) Computational methods for fitting and extrapolating the Lee–Carter model of mortality change. Technical report, Departament of Demography, University of California, BerkeleyWilmoth J (1996) Health and mortality among elderly populations, chapter mortality projections for Japan: a comparison of four methods. Oxford University Press, Oxford, pp 266–28

    Heterogeneous Expectations, Boom-Bust Housing Cycles, and Supply Conditions: A Nonlinear Dynamics Approach

    Get PDF
    We combine a standard stock-flow housing market model, incorporating explicit relationships between house prices, the housing stock, and the rent level, with a parsimonious expectation formation scheme of housing market investors, reflecting an evolving mix of extrapolative and regressive expectation rules. The model results in a two-dimensional discrete-time nonlinear dynamical system. Based on realistic parameters, the model is able to generate endogenous boom-bust housing market dynamics with lasting periods of overvaluation and overbuilding. We thus exploit our model to investigate how real forces, in particular supply conditions, interact with expectations-driven housing market fluctuations

    Contracts, Individual Revenue and Performance

    No full text
    Abstract: In some jobs individual workers have control over revenue, effort and productivity. These jobs include professional firms for law, medicine and consulting. They include personal services in areas from hair styling to taxi driving. The firm offers contracts that allow for a sharing of risks and rewards. These incentives include a split of output between the firm and worker and employee ownership. For U.S. real estate agents, a choice is available between splitting revenue with the firm or retaining 100 % above a fixed prepaid minimum. These are equity and sequential debt contracts. Under the sequential debt contract, effort increases but output per hour declines. Separately, agents increase effort and productivity if offered ownership in the firm, effectively a claim on others' performance

    Home Equity, Household Savings and Consumption

    No full text
    Wealth, Marginal propensity to consume, Consumption, Housing, Home equity, Piggybank,

    The Duration of Marketing Time of Residential Housing

    No full text
    The marketing of unique durable goods such as housing presents a good example for the application of search theory. An optimal stopping rule strategy is employed to model sellers' behavior. The primary hypothesis is that the greater the atypicality of a house, the greater the expected variance of offers. Because a maximizing seller will wish to entertain more offers the greater is the variance, the marketing time of atypical houses will be relatively longer than that of standard houses. Using a sample of resale houses, the empirical study uses a failure time model to confirm the hypothesis. Extensions are mentioned, including discussions of the role of the list price and the limitations of the standard hedonic regression approach when applied to housing. Copyright American Real Estate and Urban Economics Association.

    Estimation of Depreciation for Single-Family Appraisals

    No full text
    Methods for the estimation of depreciation within the cost approach to appraisal of single-family residential property have been the focus of very few empirical studies. The purpose of this study is to generate empirical evidence related to one such method, specifically the age-life method. Within the context of a hedonic price model, functional form of the model and the design of the age variable are chosen so that we can test for alternative paths of depreciation with just one model. The alternative paths can be concave, convex or straight-line. Contrary to the evidence presented in several previous studies, the empirical evidence presented in this paper supports a path of depreciation for single-family houses that is concave (i.e., initially less rapid than straight-line). Of the standard paths of depreciation often suggested, the reverse sum of the years digits path most closely approximates the path indicated as appropriate by this study, particularly in the early years of the life of a house. If appraisers are looking for an approximation of the path of depreciation for single-family residences, it would appear that the reverse sum of the years digits path is much more appropriate than the straight-line path that is often assumed. Copyright American Real Estate and Urban Economics Association.
    corecore