9 research outputs found

    Homogeneous earthquake catalogue for Northeast region of India using robust statistical approaches

    Get PDF
    Regular seismic hazard assessment requires essentially an updated and refined homogenous earthquake catalogue for the study region. Here, we have compiled the earthquake data for Northeast region of India in a chronological order from International Seismological Centre and Global Centroid Moment Tensor databases during the period 1 January 1900 to 31 April 2016. For this purpose, the regression techniques such as least square (SR), inverse least square (ISR), orthogonal (OR) and generalized orthogonal (GOR) which is the best one, out of that are employed for converting different types of magnitude scales, such as surface-wave magnitude (MS), body-wave magnitude (mb) and local magnitude (ML) into a single homogenized moment magnitude, MW. The homogenized catalogue is then treated with 'runs test' to estimate p-value of 0.8421 which suggest no spurious reporting on the catalogue. The prepared catalogue has also been declustered using standard procedure. Furthermore, the magnitude of completeness for space and time with 90% confidence level has been achieved. The seismicity parameters, namely magnitude of completeness MC, a-value and b-value are found to be 4.6, 7.50 and 0.95(±0.023), respectively. The observed low b-value implies that the study region is tectonically very active with the presence of asperity

    Dynamical systems of cosmological models for different possibilities of GG and ρΛ\rho_{\Lambda}

    Full text link
    The present paper deals with the dynamics of spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological model with a time varying cosmological constant Λ\Lambda where Λ\Lambda evolves with the cosmic time (t) through the Hubble parameter (H). We consider that the model dynamics has a reflection symmetry HHH \rightarrow -H with Λ(H)\Lambda(H) expressed in the form of Taylor series with respect to H. Dynamical systems for three different cases based on the possibilities of gravitational constant G and the vacuum energy density ρΛ\rho_{\Lambda} have been analysed. In Case I, both G and ρΛ\rho_{\Lambda} are taken to be constant. We analyse stability of the system by using the notion of spectral radius, behavior of perturbation along each of the axis with respect to cosmic time and Poincare sphere. In Case II, we have dynamical system analysis for G=constant and ρΛ\rho_{\Lambda} \neq constant where we study stability by using the concept of spectral radius and perturbation function. In Case III, we take GG \neq constant and ρΛ\rho_{\Lambda} \neq constant where we introduce a new set of variables to set up the corresponding dynamical system. We find out the fixed points of the system and analyse the stability from different directions: by analysing behaviour of the perturbation along each of the axis, Center Manifold Theory and stability at infinity using Poincare sphere respectively. Phase plots and perturbation plots have been presented. We deeply study the cosmological scenario with respect to the fixed points obtained and analyse the late time behavior of the Universe. Our model agrees with the fact that the Universe is in the epoch of accelerated expansion. The EOS parameter ωeff\omega_{eff}, total energy density Ωtt\Omega_{tt} are also evaluated at the fixed points for each of the three cases and these values are in agreement with the observational values in [1].Comment: 43 pages, 20 figure

    Not Available

    No full text
    Not AvailableElucidation of the molecular pathogenesis underlying virus-host interactions is important for the development of new diagnostic and therapeutic strategies against highly pathogenic avian influenza (HPAI) virus infection in chickens. However, the pathogenesis of HPAI virus in chickens is not completely understood. To identify the intracellular signaling pathways and critical host proteins associated with influenza pathogenesis, we analyzed the lung proteome of a chicken infected with HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala). Mass spectrometry data sets were searched against the chicken UniProt reference database. At the local false discovery rate level of 5%, a total of 3313 proteins with the presence of at least one unique peptide were identified in the chicken lung proteome datasets. Differential expression analysis of these proteins showed that 247 and 1754 proteins were downregulated at 12 h and 48 h postinfection, respectively. We observed expression of proteins of the predominant signaling pathways, including Toll-like receptors (TLRs), retinoic acid-inducible gene I-like receptors (RLRs), NOD-like receptors (NLRs), and JAK-STAT signaling. Activation of these pathways is associated with the cytokine storm effect and thus may be the cause of the severity of HPAI H5N1 infection in chickens. We also observed the expression of myeloid differentiation primary response protein (MyD88), inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB), interleukin 1 receptor associated kinase 4 (IRAK4), RELA proto-oncogene NF-κB subunit (RELA), and mitochondrial antiviral signaling protein (MAVS), which are involved in critical signaling pathways, as well as other, less-commonly identified proteins such as hepatocyte nuclear factor 4 alpha (HNF4A), ELAV-like RNA binding protein 1 (ELAVL1), fibronectin 1 (FN1), COP9 signalosome subunit 5 (COPS5), cullin 1 (CUL1), breast cancer type 1 susceptibility protein (BRCA1), and the FYN proto-oncogene Src family tyrosine kinase (FYN) as main hub proteins that might play important roles in influenza pathogenesis in chickens. In summary, we identified the signaling pathways and the proteomic determinants associated with disease pathogenesis in chickens infected with HPAI H5N1 virus.Not Availabl

    Not Available

    No full text
    Not AvailableA retrospective investigation of pig tissue samples from different classical swine fever virus (CSFV) outbreaks was undertaken employing RT-PCR for possible coinfection with other swine viruses. Four samples from three different outbreaks were found to be coinfected with Japanese encephalitis virus (JEV). Phylogenetic analysis was done based on complete E gene sequenced from all four coinfected samples. This revealed a new introduction of a divergent subgroup of JEV genotype I in India. This is the first report of detection of coinfection of JEV and CSFV in pigs and the first incidence of JEV genotype I in pigs in IndiaNot Availabl

    Not Available

    No full text
    Not AvailableA retrospective investigation of pig tissue samples from different classical swine fever virus (CSFV) outbreaks was undertaken employing RT-PCR for possible coinfection with other swine viruses. Four samples from three different outbreaks were found to be coinfected with Japanese encephalitis virus (JEV). Phylogenetic analysis was done based on complete E gene sequenced from all four coinfected samples. This revealed a new introduction of a divergent subgroup of JEV genotype I in India. This is the first report of detection of coinfection of JEV and CSFV in pigs and the first incidence of JEV genotype I in pigs in India.Not Availabl
    corecore