2,162 research outputs found
Electromagnetic Wave Theory and Applications
Contains reports on eleven research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)Joint Services Electronics Program (Contract DAAL03-86-K-0002)National Science Foundation (Grant ECS82-03390)National Science Foundation (Grant ECS85-04381)Schlumberger-Doll Research CenterNational Aeronautics and Space Administration (Contract NAG 5-141)National Aeronautics and Space Administration (Contract NAS 5-26861)National Aeronautics and Space Administration (Contract NAG 5-270)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)National Aeronautics and Space Administration (Contract NAG 5-725)International Business Machines, Inc.Lincoln Laborator
Konsep Demokrasi Politik Dalam Islam
Coexistence of chronic rhinosinusitis (CRS) with asthma appears to impair asthma control. Type-2 innate lymphoid cells (ILC2s) respond to the cytokines of thymic stromal lymphopoietin (TSLP), interleukin (IL)-25 and IL-33, thus contributing to airway diseases such as CRS and asthma. We investigate whether the augmented Th2-cytokines in CRS might be related to sinonasal tract ILC2s corresponding to enhanced IL-25, IL-33 and TSLP release in severe asthmatics, and be involved in asthma control. Twenty-eight asthmatics (12 non-severe and 16 severe) with CRS receiving nasal surgery were enrolled. The predicted FEV1 inversely associated with CRS severity of CT or endoscopy scores. Higher expression of Th2-driven cytokines (IL-4, IL-5, IL-9, and IL-13), TSLP, IL-25 and IL-33 in nasal tissues was observed in severe asthma. Severe asthmatics had higher ILC2 cell counts in their nasal tissues. ILC2 counts were positively correlated with Th2-cytokines. Nasal surgery significantly improved asthma control and lung function decline in severe asthma and CRS. The higher expression of IL-33/ILC2 axis-directed type 2 immune responses in nasal tissue of CRS brought the greater decline of lung function in severe asthma. ILC2-induced the upregulated activity of Th2-related cytokines in asthmatics with CRS may contribute to a recalcitrant status of asthma control
Unraveling the Role of the rssC Gene of Serratia marcescens by Atomic Force Microscopy
100學年度研究獎補助論文[[abstract]]The product and direct role of the rssC gene of Serratia marcescens is unknown. For unraveling the role of the rssC gene, atomic force microscopy has been used to identify the surfaces of intact S. marcescens wild-type CH-1 cells and rssC mutant CH-1ΔC cells. The detailed surface topographies were directly visualized, and quantitative measurements of the physical properties of the membrane structures were provided. CH-1 and CH-1ΔC cells were observed before and after treatment with lysozyme, and their topography-related parameters, e.g., a valley-to-peak distance, mean height, surface roughness, and surface root-mean-square values, were defined and compared. The data obtained suggest that the cellular surface topography of mutant CH-1ΔC becomes rougher and more precipitous than that of wild-type CH-1 cells. Moreover, it was found that, compared with native wild-type CH-1, the cellular surface topography of lysozyme-treated CH-1 was not changed profoundly. The product of the rssC gene is thus predicted to be mainly responsible for fatty-acid biosynthesis of the S. marcescens outer membrane. This study represents the first direct observation of the structural changes in membranes of bacterial mutant cells and offers a new prospect for predicting gene expression in bacterial cells.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]GB
BIOMECHANICAL ANALYSIS OF THE GRAB AND TRACK SWIMMING STARTS
The aim of this study was to compare the grab and track competitive swimming starts. Twelve male college competitive swimmers (six used the grab start and six the track start) participated in this study. Data were collected from two video cameras (60Hz) above water. The video data were digitized and analysis was performed with the Kwon3D Motion Analysis system. No significant differences existed between the two groups for flight time and distance, time to 12m, takeoff velocity and angle, entry velocity and angle and the center of mass at highest position above water. The track start had the centre of mass on the block more towards the rear and a shorter block time (
Structural Learning of Attack Vectors for Generating Mutated XSS Attacks
Web applications suffer from cross-site scripting (XSS) attacks that
resulting from incomplete or incorrect input sanitization. Learning the
structure of attack vectors could enrich the variety of manifestations in
generated XSS attacks. In this study, we focus on generating more threatening
XSS attacks for the state-of-the-art detection approaches that can find
potential XSS vulnerabilities in Web applications, and propose a mechanism for
structural learning of attack vectors with the aim of generating mutated XSS
attacks in a fully automatic way. Mutated XSS attack generation depends on the
analysis of attack vectors and the structural learning mechanism. For the
kernel of the learning mechanism, we use a Hidden Markov model (HMM) as the
structure of the attack vector model to capture the implicit manner of the
attack vector, and this manner is benefited from the syntax meanings that are
labeled by the proposed tokenizing mechanism. Bayes theorem is used to
determine the number of hidden states in the model for generalizing the
structure model. The paper has the contributions as following: (1)
automatically learn the structure of attack vectors from practical data
analysis to modeling a structure model of attack vectors, (2) mimic the manners
and the elements of attack vectors to extend the ability of testing tool for
identifying XSS vulnerabilities, (3) be helpful to verify the flaws of
blacklist sanitization procedures of Web applications. We evaluated the
proposed mechanism by Burp Intruder with a dataset collected from public XSS
archives. The results show that mutated XSS attack generation can identify
potential vulnerabilities.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330
AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks
Transformer-based pre-trained models with millions of parameters require
large storage. Recent approaches tackle this shortcoming by training adapters,
but these approaches still require a relatively large number of parameters. In
this study, AdapterBias, a surprisingly simple yet effective adapter
architecture, is proposed. AdapterBias adds a token-dependent shift to the
hidden output of transformer layers to adapt to downstream tasks with only a
vector and a linear layer. Extensive experiments are conducted to demonstrate
the effectiveness of AdapterBias. The experiments show that our proposed method
can dramatically reduce the trainable parameters compared to the previous works
with a minimal decrease in task performances compared with fine-tuned
pre-trained models. We further find that AdapterBias automatically learns to
assign more significant representation shifts to the tokens related to the task
in consideration.Comment: The first two authors contributed equally. This paper was published
in Findings of NAACL 202
Electromagnetic Wave Theory and Applications
Contains reports on twelve research projects.Joint Services Electronics Program (Contract DAALO3-86-K-0002)National Science Foundation (Grant ECS 85-04381)National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-270)National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-725)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0533)U.S. Army - Research Office Durham (Contract DAAG29-85-K-0079)International Business Machines, Inc.National Aeronautics and Space Administration/Goddard Space Flight Center (Contract NAG5-269)Simulation TechnologiesSchlumberger-Doll Researc
Earth’s Outgoing Longwave Radiation Variability Prior to M ≥6.0 Earthquakes in the Taiwan Area During 2009–2019
This paper proposes an analysis method, using the National Oceanic and Atmospheric Administration satellite data, to trace variations in outgoing longwave radiation (OLR) for finding the precursors of earthquakes. The significance of these observations is investigated using data sets of recent M ≥6.0 earthquakes around the Taiwan area from 2009 to 2019. We suggest that the precursory signal could be an EIndex anomaly (EA) in the form of substantial thermal releases distributed near the epicenter. The consecutive appearances of OLR EAs are observed as precursors 2–15 days before significant earthquakes, and we refer to this as a pre-earthquake OLR EIndex anomaly (POEA). We interpret these thermal sources as possibly originating from electromagnetics together with gas emissions associated with pre-seismic processes. This study highlights the potential of OLR anomalous changes in earthquake precursor studies, at least in the Taiwan region
Electromagnetic Wave Theory and Applications
Contains table of contents for Section 3, research summary and reports on six research projects.Joint Services Electronics Program (Contract DAAL 03-86-K-0002)Joint Services Electronics Program (Contract DAAL 03-89-C-0001)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0533)National Science Foundation (Contract ECS 86-20029)U.S. Army Research Office (Contract DAAL03 88-K-0057)International Business Machine CorporationSchlumberger-Doll ResearchNational Aeronautics and Space Administration (Contract NAG 5-270)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)National Aeronautics and Space Administration (Contract NAG 5-769)U.S. Army Corps of Engineers - Waterways Experimental Station (Contract DACA39-87-K-0022)Simulation TechnologiesU.S. Air Force - Rome Air Development Center (Contract F19628-88-K-0013)U.S. Navy - Office of Naval Research (Contract N00014-89-J-1107)Digital Equipment Corporatio
- …
