2,638 research outputs found

    Association between health examination items and body mass index among school children in Hualien, Taiwan

    Get PDF
    BACKGROUND: To assess the prevalence of obesity and major physical examination items including dental caries, myopia, pinworm, hematuria, and proteinuria among school children in Hualien, Taiwan. In addition, the health status differences between gender, grader, levels of residence urbanization, and body mass index (BMI) were examined. METHODS: Cross-sectional studies with a total of 11,080 students (age, 7–14 years) in grades 1, 4, and 7 were evaluated for weight, height, routine physical examination, and urine analysis during the 2010 Student Health Examination in Hualien. Frequencies, Chi-square test, and logistic regression were conducted using SPSS. RESULTS: Of the 11,080 students evaluated, 1357 (12.2%) were overweight, and 1421 (12.8%) were obese. There were significant differences in overweight/obese prevalence by gender, by grader, and by levels of residence urbanization. Dental caries, myopia, and obesity were the most prevalent health problems among these students (75.6%, 33.0%, and 12.8%, respectively). In crude and adjusted analyses, research results showed that there were significant differences in the prevalence of major physical examination items between different gender, grader, levels of residence urbanization, and BMI groups. Girls had a higher prevalence of dental caries, myopia, and hematuria than boys (all p < 0.01), whereas boys had a higher prevalence of pinworm than girls (p = 0.02). Students in higher grades had significantly higher prevalence of myopia, hematuria, and proteinuria (all p < 0.01), whereas students in lower grades had higher prevalence of dental caries and pinworm (p < 0.01). Students with abnormal BMI had lower prevalence of pinworm (p < 0.01). Students residing in suburban and rural areas had higher prevalence of dental caries, pinworm, and hematuria (all p < 0.01), and lower prevalence of myopia than students residing in urban areas (all p < 0.01). CONCLUSION: Routine health examination provides an important way to detect students’ health problems. Our study elucidated major health problems among school children in Hualien, Taiwan. In addition, the results also indicated that the prevalence of health problems had a significant relationship with gender, grader, levels of residence urbanization, and BMI. It is suggested that school health interventions should consider students’ health profiles along with their risk factors status in planning

    Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells

    Get PDF
    Mitochondrial dynamics during nutrient starvation of cancer cells likely exert profound effects on their capability for metastatic progression. Here, we report that KAP1 (TRIM28), a transcriptional coadaptor protein implicated in metastatic progression in breast cancer, is a pivotal regulator of mitochondrial fusion in glucose-starved cancer cells. Diverse metabolic stresses induced Ser473 phosphorylation of KAP1 (pS473-KAP1) in a ROS- and p38-dependent manner. Results from live-cell imaging and molecular studies revealed that during the first 6 to 8 hours of glucose starvation, mitochondria initially underwent extensive fusion, but then subsequently fragmented in a pS473-KAP1-dependent manner. Mechanistic investigations using phosphorylation-defective mutants revealed that KAP1 Ser473 phosphorylation limited mitochondrial hyperfusion in glucose-starved breast cancer cells, as driven by downregulation of the mitofusin protein MFN2, leading to reduced oxidative phosphorylation and ROS production. In clinical specimens of breast cancer, reduced expression of MFN2 corresponded to poor prognosis in patients. In a mouse xenograft model of human breast cancer, there was an association in the core region of tumors between MFN2 downregulation and the presence of highly fragmented mitochondria. Collectively, our results suggest that KAP1 Ser473 phosphorylation acts through MFN2 reduction to restrict mitochondrial hyperfusion, thereby contributing to cancer cell survival under conditions of sustained metabolic stress

    Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1–FoxM1 complex

    Get PDF
    Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy

    Effects of mycophenolate mofetil on cutaneous lupus erythematosus in (NZB × NZW) F1 mice

    Get PDF
    AbstractBackgroundFew studies have evaluated the effects and precise molecular mechanism of mycophenolate mofetil (MMF) in the treatment of human cutaneous lupus erythematosus (CLE). Our findings shed light on the therapeutic effects of MMF in a UVB-induced NZB × NZW (NZBW) F1 CLE mouse model.MethodsContinuous MMF treatment (60 mg/kg/day) was administered up to Day 50 from the beginning of UVB induction (Day 0; 20 weeks old), as the pathologic features of CLE are present after 50 days. The therapeutic effects of MMF treatment in NZBW lupus mice were examined by comparing histopathological changes, lupus band test (deposition of immune complexes at the dermal–epidermal junction) and colocalization of autoantibodies with a dermal autoantigen Dsg3, and by evaluating the associations of local matrix metalloprotease activities.ResultsMMF improved survival in the NZBW lupus mice from 35.7% to 81.8%. The proteinuria, blood urea nitrogen, and interleukin 6 levels were significantly reduced after MMF treatment. The dermal lymphocytic infiltration, deposition of immune complexes at the dermal–epidermal junction, colocalized autoantibodies with Dsg3, and epidermal matrix metalloprotease activity were also attenuated in MMF-treated NZBW F1 mice.ConclusionThe results confirmed that MMF could substantially attenuate skin damage due to CLE in the NZBW F1 mouse model

    A powerful and efficient multivariate approach for voxel-level connectome-wide association studies

    Get PDF
    We describe an approach to multivariate analysis, termed structured kernel principal component regression (sKPCR), to identify associations in voxel-level connectomes using resting-state functional magnetic resonance imaging (rsfMRI) data. This powerful and computationally efficient multivariate method can identify voxel-phenotype associations based on the whole-brain connectivity pattern of voxels, and it can detect linear and non-linear signals in both volume-based and surface-based rsfMRI data. For each voxel, sKPCR first extracts low-dimensional signals from the spatially smoothed connectivities by structured kernel principal component analysis, and then tests the voxel-phenotype associations by an adaptive regression model. The method's power is derived from appropriately modelling the spatial structure of the data when performing dimension reduction, and then adaptively choosing an optimal dimension for association testing using the adaptive regression strategy. Simulations based on real connectome data have shown that sKPCR can accurately control the false-positive rate and that it is more powerful than many state-of-the-art approaches, such as the connectivity-wise generalized linear model (GLM) approach, multivariate distance matrix regression (MDMR), adaptive sum of powered score (aSPU) test, and least-square kernel machine (LSKM). Moreover, since sKPCR can reduce the computational cost of non-parametric permutation tests, its computation speed is much faster. To demonstrate the utility of sKPCR for real data analysis, we have also compared sKPCR with the above methods based on the identification of voxel-wise differences between schizophrenic patients and healthy controls in four independent rsfMRI datasets. The results showed that sKPCR had better between-sites reproducibility and a larger proportion of overlap with existing schizophrenia meta-analysis findings. Code for our approach can be downloaded from https://github.com/weikanggong/sKPCR. [Abstract copyright: Copyright © 2018 Elsevier Inc. All rights reserved.

    Is the whole greater than the sum of its parts? De novo assembly strategies for bacterial genomes based on paired-end sequencing

    Get PDF
    Number of misassemblies for different assembly strategies. Number of misassemblies for the de novo assembly results for E. coli DH1 and S. Parasanguinis FW213 are shown together with their standard errors of the mean. Group A [PE] and Group A [SE] represent all reads assembled as paired-end reads and single end reads, respectively. Group A [PE + SE] represents all the non-overlapped paired-end reads assembled together with merged reads. Group M [PE] and Group M [SE] represent Group M reads assembled as paired-end reads and single end reads, respectively. The numbers of misassemblies fluctuate a lot when depths of read number are low and gradually decreases until they reach a steady number. The paired-end reads (Group A [PE] and Group M [PE]) in S. Parasanguinis FW213 gave the lowest number of misassemblies when depths of read number are high. (TIFF 669 kb

    Role of PPARα and Its Agonist in Renal Diseases

    Get PDF
    Peroxisome proliferator-activated receptor (PPAR)-α, a member of a large nuclear receptor superfamily, plays a major role in the regulation of lipid metabolism. Recently, PPARα activation has been shown to confer additional benefits on endothelial function, kidney function, and anti-inflammation, suggesting that PPARα agonists may be good candidates for treating acute renal failure. In clinical application, PPAR-α activators, such as hypolipidemic drugs in fibric acid class, were proven to have therapeutic effects on metabolic syndrome and cardiovascular disease. This paper focuses on signaling pathways, ligand selectivity, and physio-pathological roles of PPARα in kidney diseases and the therapeutic utility of PPARα modulators in the treatment of diabetes and inflammation-induced nephropathy. Implication of new and more potent PPAR-α activators could provide important insights into the overall benefits of activating PPAR-α clinically for the treatment of dyslipidemia and the prevention of diabetic or inflammation-induced nephropathy in the future

    Functional connectivity of the human amygdala in health and in depression

    Get PDF
    To analyze the functioning of the amygdala in depression, we performed the first voxel-level resting state functional-connectivity neuroimaging analysis of depression of voxels in the amygdala with all other voxels in the brain, with 336 patients with major depressive disorder and 350 controls. Amygdala voxels had decreased functional connectivity with the orbitofrontal cortex, temporal lobe areas, including the temporal pole, inferior temporal gyrus, and the parahippocampal gyrus. The reductions in the strengths of the functional connectivity of the amygdala voxels with the medial orbitofrontal cortex and temporal lobe voxels were correlated with increases in the Beck Depression Inventory score and in the duration of illness measures of depression. Parcellation analysis in 350 healthy controls based on voxel-level functional connectivity showed that the basal division of the amygdala has high functional connectivity with medial orbitofrontal cortex areas, and the dorsolateral amygdala has strong functional connectivity with the lateral orbitofrontal cortex and related ventral parts of the inferior frontal gyrus. In depression, the basal amygdala division had especially reduced functional connectivity with the medial orbitofrontal cortex which is involved in reward; and the dorsolateral amygdala subdivision had relatively reduced functional connectivity with the lateral orbitofrontal cortex which is involved in non-reward
    corecore