11,302 research outputs found
Endogenous Money - A Structural Model of Monetary Base
In this paper, a structural monetary base model is developed. An important feature of this approach is that the model combines three parts of the determinants of the monetary base. The three parts are the commercial bank, the public and the central bank. Bank behaviour relies on an explicit specification of a maximum profit-seeking and risk-averse model which describes the determinants of the supply of deposits by banks as well as their demands for earning assets and (free) reserves. The behaviours of the public and central bank are set up exogeneously. According to the structural model, we derive the monetary base equation which is determined by various financial and real variables endogenously.
Wildcard dimensions, coding theory and fault-tolerant meshes and hypercubes
Hypercubes, meshes and tori are well known interconnection networks for parallel computers. The sets of edges in those graphs can be partitioned to dimensions. It is well known that the hypercube can be extended by adding a wildcard dimension resulting in a folded hypercube that has better fault-tolerant and communication capabilities. First we prove that the folded hypercube is optimal in the sense that only a single wildcard dimension can be added to the hypercube. We then investigate the idea of adding wildcard dimensions to d-dimensional meshes and tori. Using techniques from error correcting codes we construct d-dimensional meshes and tori with wildcard dimensions. Finally, we show how these constructions can be used to tolerate edge and node faults in mesh and torus networks
Invariant set of weight of perceptron trained by perceptron training algorithm
In this paper, an invariant set of the weight of the perceptron trained by the perceptron training algorithm is defined and characterized. The dynamic range of the steady state values of the weight of the perceptron can be evaluated via finding the dynamic range of the weight of the perceptron inside the largest invariant set. Also, the necessary and sufficient condition for the forward dynamics of the weight of the perceptron to be injective as well as the condition for the invariant set of the weight of the perceptron to be attractive is derived
Symbolic dynamical model of average queue size of random early detection algorithm
In this paper, a symbolic dynamical model of the average queue size of the random early detection (RED) algorithm is proposed. The conditions on both the system parameters and the initial conditions that the average queue size of the RED algorithm would converge to a fixed point are derived. These results are useful for network engineers to design both the system parameters and the initial conditions so that internet networks would achieve a good performance
Time lagged ordinal partition networks for capturing dynamics of continuous dynamical systems
We investigate a generalised version of the recently proposed ordinal
partition time series to network transformation algorithm. Firstly we introduce
a fixed time lag for the elements of each partition that is selected using
techniques from traditional time delay embedding. The resulting partitions
define regions in the embedding phase space that are mapped to nodes in the
network space. Edges are allocated between nodes based on temporal succession
thus creating a Markov chain representation of the time series. We then apply
this new transformation algorithm to time series generated by the R\"ossler
system and find that periodic dynamics translate to ring structures whereas
chaotic time series translate to band or tube-like structures -- thereby
indicating that our algorithm generates networks whose structure is sensitive
to system dynamics. Furthermore we demonstrate that simple network measures
including the mean out degree and variance of out degrees can track changes in
the dynamical behaviour in a manner comparable to the largest Lyapunov
exponent. We also apply the same analysis to experimental time series generated
by a diode resonator circuit and show that the network size, mean shortest path
length and network diameter are highly sensitive to the interior crisis
captured in this particular data set
Fault-tolerant meshes and hypercubes with minimal numbers of spares
Many parallel computers consist of processors connected in the form of a d-dimensional mesh or hypercube. Two- and three-dimensional meshes have been shown to be efficient in manipulating images and dense matrices, whereas hypercubes have been shown to be well suited to divide-and-conquer algorithms requiring global communication. However, even a single faulty processor or communication link can seriously affect the performance of these machines.
This paper presents several techniques for tolerating faults in d-dimensional mesh and hypercube architectures. Our approach consists of adding spare processors and communication links so that the resulting architecture will contain a fault-free mesh or hypercube in the presence of faults. We optimize the cost of the fault-tolerant architecture by adding exactly k spare processors (while tolerating up to k processor and/or link faults) and minimizing the maximum number of links per processor. For example, when the desired architecture is a d-dimensional mesh and k = 1, we present a fault-tolerant architecture that has the same maximum degree as the desired architecture (namely, 2d) and has only one spare processor. We also present efficient layouts for fault-tolerant two- and three-dimensional meshes, and show how multiplexers and buses can be used to reduce the degree of fault-tolerant architectures. Finally, we give constructions for fault-tolerant tori, eight-connected meshes, and hexagonal meshes
- …
