162 research outputs found

    Using nexus thinking to identify opportunities for mangrove management in the Klang Islands, Malaysia

    Get PDF
    Despite wide recognition of the multiple ecosystem services provided by mangroves, they continue to experience decline and degradation especially in the face of urbanization. Given the interplay between multiple resources and stakeholders in the fate of mangroves, mangrove management can be framed as a nexus challenge and nexus thinking used to identify potential solutions. Using the Klang Islands, Malaysia, as a case study site, this paper characterizes the mangrove nexus and stakeholders visions for the future to identify potential options for future management. Through a series of stakeholder workshops and focus group discussions conducted over two years results show that local communities can identify benefits from mangroves beyond the provisioning of goods and significant impacts to their lives from mangrove loss. While better protected and managed mangroves remained a central part of participants' visions for the islands, participants foresaw a limited future for fishing around the islands, preferring instead alternative livelihood opportunities such as eco-tourism. The network of influencers of the Klang Islands’ mangroves extends far beyond the local communities and many of these actors were part of the visions put forward. Stakeholders with a high interest in the mangroves typically have a low influence over their management and many high influence stakeholders (e.g. private sector actors) were missing from the engagement. Future nexus action should focus on integrating stakeholders and include deliberate and concerted engagement with high influence stakeholders while at the same time ensuring a platform for high interest/low influence groups. Fortifying existing plans to include mangroves more explicitly will also be essential. Lessons learnt from this study are highly relevant for coastal mangrove systems elsewhere in the Southeast Asian region

    Methylation profiling of Epstein-Barr virus immediate-early gene promoters, BZLF1 and BRLF1 in tumors of epithelial, NK- and B-cell origins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epstein-Barr virus (EBV) establishes its latency in EBV-associated malignancies, accompanied by occasionally reactivated lytic cycle. Promoter CpG methylation of EBV genome plays an essential role in maintaining viral latency. Two immediate-early (IE) genes, BZLF1 and BRLF1, induce the switch from latent to lytic infection. Studies of methylation-dependent binding of BZLF1 and BRLF1 to EBV promoters have been well reported, but little is known about the methylation status of <it>BZLF1 </it>and <it>BRLF1 </it>promoters (Zp and Rp) in tumor samples.</p> <p>Methods</p> <p>We evaluated the methylation profiles of Zp and Rp by methylation-specific PCR (MSP) and bisulfite genomic sequencing (BGS), as well as <it>BZLF1 </it>and <it>BRLF1 </it>expression by semiquantitative reverse transcription (RT)-PCR in tumors of epithelial, NK- and B-cell origins.</p> <p>Results</p> <p>We found that both Zp and Rp were hypermethylated in all studied EBV-positive cell lines and tumors of lymphoid (B- or NK cell) or epithelial origin, while unmethylated Zp and Rp alleles were detected in cell lines expressing <it>BZLF1 </it>and <it>BRLF1</it>. Following azacytidine treatment or combined with trichostatin A (TSA), the expression of <it>BZLF1 </it>and <it>BRLF1 </it>was restored along with concomitant promoter demethylation, which subsequently induced the reactivation of early lytic gene <it>BHRF1 </it>and late lytic gene <it>BLLF1</it>.</p> <p>Conclusions</p> <p>Hypermethylation of Zp and Rp mediates the frequent silencing of <it>BZLF1 </it>and <it>BRLF1 </it>in EBV-associated tumors, which could be reactivated by demethylation agent and ultimately initiated the EBV lytic cascade.</p

    A novel combretastatin A-4 derivative, AC7700, strongly stanches tumour blood flow and inhibits growth of tumours developing in various tissues and organs

    Get PDF
    In a previous study, we used subcutaneous LY80 tumours (a subline of Yoshida sarcoma), Sato lung carcinoma, and methylcholanthrene-induced primary tumours, to demonstrate that a novel water-soluble combretastatin A-4 derivative, AC7700, abruptly and irreversibly stopped tumour blood flow. As a result of this interrupted supply of nutrients, extensive necrosis was induced within the tumour. In the present study, we investigated whether AC7700 acts in the same way against solid tumours growing in the liver, stomach, kidney, muscle, and lymph nodes. Tumour blood flow and the change in tumour blood flow induced by AC7700 were measured by the hydrogen clearance method. In a model of cancer chemotherapy against metastases, LY80 cells (2×106) were injected into the lateral tail vein, and AC7700 at 10 mg kg−1 was injected i.v. five times at intervals of 2 days, starting on day 7 after tumour cell injection. The number and size of tumours were compared with those in the control group. The change in tumour blood flow and the therapeutic effect of AC7700 on microtumours were observed directly by using Sato lung carcinoma implanted in a rat transparent chamber. AC7700 caused a marked decrease in the tumour blood flow of all LY80 tumours developing in various tissues and organs and growth of all tumours including lymph node metastases and microtumours was inhibited. In every tumour, tumour blood flow began to decrease immediately after AC7700 administration and reached a minimum at approximately 30 min after injection. In many tumour capillaries, blood flow completely stopped within 3 min after AC7700 administration. These results demonstrate that AC7700 is effective for tumours growing in various tissues and organs and for metastases. We conclude that tumour blood flow stanching induced by AC7700 may become an effective therapeutic strategy for all cancers, including refractory cancers because the therapeutic effect is independent of tumour site and specific type of cancer

    Purification and Characterization of Enterovirus 71 Viral Particles Produced from Vero Cells Grown in a Serum-Free Microcarrier Bioreactor System

    Get PDF
    [[abstract]]Background: Enterovirus 71 (EV71) infections manifest most commonly as a childhood exanthema known as hand-foot-and-mouth disease (HFMD) and can cause neurological disease during acute infection. Principal Finding: In this study, we describe the production, purification and characterization of EV71 virus produced from Vero cells grown in a five-liter serum-free bioreactor system containing 5 g/L Cytodex 1 microcarrier. The viral titer was >106 TCID50/mL by 6 days post infection when a MOI of 10?5 was used at the initial infection. Two EV71 virus fractions were separated and detected when the harvested EV71 virus concentrate was purified by sucrose gradient zonal ultracentrifugation. The EV71 viral particles detected in the 24–28% sucrose fractions had an icosahedral structure 30–31 nm in diameter and had low viral infectivity and RNA content. Three major viral proteins (VP0, VP1 and VP3) were observed by SDS-PAGE. The EV71 viral particles detected in the fractions containing 35–38% sucrose were 33–35 nm in size, had high viral infectivity and RNA content, and were composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. The two virus fractions were formalin-inactivated and induced high virus neutralizing antibody responses in mouse immunogenicity studies. Both mouse antisera recognized the immunodominant linear neutralization epitope of VP1 (residues 211–225). Conclusion:These results provide important information for cell-based EV71 vaccine development, particularly for the preparation of working standards for viral antigen quantification

    The Orphan Gene ybjN Conveys Pleiotropic Effects on Multicellular Behavior and Survival of Escherichia coli

    Get PDF
    YbjN, encoding an enterobacteria-specific protein, is a multicopy suppressor of temperature sensitivity in the ts9 mutant strain of Escherichia coli. In this study, we further explored the role(s) of ybjN. First, we demonstrated that the ybjN transcript was about 10-fold lower in the ts9 strain compared to that of E. coli strain BW25113 (BW). Introduction of multiple copies of ybjN in the ts9 strain resulted in over-expression of ybjN by about 10-fold as compared to that of BW. These results suggested that temperature sensitivity of the ts9 mutant of E. coli may be related to expression levels of ybjN. Characterization of E. coli ybjN mutant revealed that ybjN mutation resulted in pleiotropic phenotypes, including increased motility, fimbriation (auto-aggregation), exopolysaccharide production, and biofilm formation. In contrast, over-expression of ybjN (in terms of multiple copies) resulted in reduced motility, fimbriation, exopolysaccharide production, biofilm formation and acid resistance. In addition, our results indicate that a ybjN-homolog gene from Erwinia amylovora, a plant enterobacterial pathogen, is functionally conserved with that of E. coli, suggesting similar evolution of the YbjN family proteins in enterobacteria. A microarray study revealed that the expression level of ybjN was inversely correlated with the expression of flagellar, fimbrial and acid resistance genes. Over-expression of ybjN significantly down-regulated genes involved in citric acid cycle, glycolysis, the glyoxylate shunt, oxidative phosphorylation, amino acid and nucleotide metabolism. Furthermore, over-expression of ybjN up-regulated toxin-antitoxin modules, the SOS response pathway, cold shock and starvation induced transporter genes. Collectively, these results suggest that YbjN may play important roles in regulating bacterial multicellular behavior, metabolism, and survival under stress conditions in E. coli. These results also suggest that ybjN over-expression-related temperature rescue of the ts9 mutant may be due to down-regulation of metabolic activity and activation of stress response genes in the ts9 mutant

    Structures of Helicobacter pylori Shikimate Kinase Reveal a Selective Inhibitor-Induced-Fit Mechanism

    Get PDF
    Shikimate kinase (SK), which catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid in the presence of ATP, is the enzyme in the fifth step of the shikimate pathway for biosynthesis of aromatic amino acids. This pathway is present in bacteria, fungi, and plants but absent in mammals and therefore represents an attractive target pathway for the development of new antimicrobial agents, herbicides, and antiparasitic agents. Here we investigated the detailed structure–activity relationship of SK from Helicobacter pylori (HpSK). Site-directed mutagenesis and isothermal titration calorimetry studies revealed critical conserved residues (D33, F48, R57, R116, and R132) that interact with shikimate and are therefore involved in catalysis. Crystal structures of HpSK·SO4, R57A, and HpSK•shikimate-3-phosphate•ADP show a characteristic three-layer architecture and a conformationally elastic region consisting of F48, R57, R116, and R132, occupied by shikimate. The structure of the inhibitor complex, E114A•162535, was also determined, which revealed a dramatic shift in the elastic LID region and resulted in conformational locking into a distinctive form. These results reveal considerable insight into the active-site chemistry of SKs and a selective inhibitor-induced-fit mechanism

    Co-Inoculation with Rhizobia and AMF Inhibited Soybean Red Crown Rot: From Field Study to Plant Defense-Related Gene Expression Analysis

    Get PDF
    Background: Soybean red crown rot is a major soil-borne disease all over the world, which severely affects soybean production. Efficient and sustainable methods are strongly desired to control the soil-borne diseases. Principal Findings: We firstly investigated the disease incidence and index of soybean red crown rot under different phosphorus (P) additions in field and found that the natural inoculation of rhizobia and arbuscular mycorrhizal fungi (AMF) could affect soybean red crown rot, particularly without P addition. Further studies in sand culture experiments showed that inoculation with rhizobia or AMF significantly decreased severity and incidence of soybean red crown rot, especially for coinoculation with rhizobia and AMF at low P. The root colony forming unit (CFU) decreased over 50 % when inoculated by rhizobia and/or AMF at low P. However, P addition only enhanced CFU when inoculated with AMF. Furthermore, root exudates of soybean inoculated with rhizobia and/or AMF significantly inhibited pathogen growth and reproduction. Quantitative RT-PCR results indicated that the transcripts of the most tested pathogen defense-related (PR) genes in roots were significantly increased by rhizobium and/or AMF inoculation. Among them, PR2, PR3, PR4 and PR10 reached the highest level with co-inoculation of rhizobium and AMF. Conclusions: Our results indicated that inoculation with rhizobia and AMF could directly inhibit pathogen growth and reproduction, and activate the plant overall defense system through increasing PR gene expressions. Combined wit
    corecore