32 research outputs found

    Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science

    Get PDF
    The emergence of single atom sites as a frontier research area in catalysis has sparked extensive academic and industrial interest, especially for energy, environmental and chemicals production processes. Single atom catalysts (SACs) have shown remarkable performance in a variety of catalytic reactions, demonstrating high selectivity to the products of interest, long lifespan, high stability and more importantly high atomic metal utilization efficiency. In this review, we unveil in depth insights on development and achievements of SACs, including (a) Chronological progress on SACs development, (b) Recent advances in SACs synthesis, (c) Spatial and temporal SACs characterization techniques, (d) Application of SACs in different energy and chemical production, (e) Environmental and economic aspects of SACs, and (f) Current challenges, promising ideas and future prospects for SACs. On a whole, this review serves to enlighten scientists and engineers in developing fundamental catalytic understanding that can be applied into the future, both for academia or valorizing chemical processes

    Visualization of grapevine root colonization by the Saharan soil isolate Saccharothrix algeriensis NRRL B-24137 using DOPE-FISH microscopy

    Get PDF
    Background and aim There is currently a gap of knowledge regarding whether some beneficial bacteria isolated from desert soils can colonize epi- and endophytically plants of temperate regions. In this study, the early steps of the colonization process of one of these bacteria, Saccharothrix algeriensis NRRL B-24137, was studied on grapevine roots to determine if this beneficial strain can colonize a non-natural host plant. An improved method of fluorescence in situ hybridization (FISH), the double labeling of oligonucleotide probes (DOPE)-FISH technique was used to visualize the colonization behavior of such bacteria as well as to determine if the method could be used to track microbes on and inside plants. Methods A probe specific to Saccharothrix spp. was firstly designed. Visualization of the colonization behavior of S. algeriensis NRRL B-24137 on and inside roots of grapevine plants was then carried out with DOPE-FISH microscopy. Results The results showed that 10 days after inoculation, the strain could colonize the root hair zone, root elongation zone, as well as root emergence sites by establishing different forms of bacterial structures as revealed by the DOPE-FISH technique. Further observations showed that the strain could be also endophytic inside the endorhiza of grapevine plants. Conclusions Taking into account the natural niches of this beneficial strain, this study exemplifies that, in spite of its isolation from desert soil, the strain can establish populations as well as subpopulations on and inside grapevine plants and that the DOPE-FISH tool can allow to detect it

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Modeling of the co-pyrolysis of rubber residual and HDPE waste using the distributed activation energy model (DAEM)

    No full text
    The kinetic analysis for rubber residual i.e. rubber seed shell, high density polyethylene (HDPE) waste and its mixture are investigated using distributed activation energy model (DAEM) reaction model. Furthermore, the pyrolysis characteristics from these materials are investigated by non-isothermal thermogravimetric analysis from temperature 323 K to 1173 K at varying heating rates range of 10–200 K/min in inert argon atmosphere. The average value determined for activation energy, Eaand pre-exponential factor, k0are 54.888 kJ mol-1and 6.923 × 104s-1respectively for RSS, 75.396 kJ mol-1and 1.346 × 106s-1respectively for HDPE and 64.010 kJ mol-1and 8.444 × 104s-1respectively for binary mixture of RSS/HDPE. By taking these values as the initial guess for Gaussian distribution, and assuming the standard deviation, s is at 15 kJ mol-1, as well as constant k0value for all first order reactions, the mean activation energy, E0determined from the distribution curve for RSS, HDPE and RSS/HDPE are 55.0 kJ mol-1, 75.5 kJ mol-1and 64.0 kJ mol-1respectively. The values of E0and k0in pyrolysis of binary mixture of RSS/HDPE are found to be lower compared to the individual component of RSS and HDPE in pyrolysis process

    Quantitative Evaluation of Adult Subglottic Stenosis Using Intraoperative Long-range Optical Coherence Tomography.

    No full text
    ObjectivesTo determine the feasibility of long-range optical coherence tomography (LR-OCT) as a tool to intraoperatively image and measure the subglottis and trachea during suspension microlaryngoscopy before and after endoscopic treatment of subglottic stenosis (SGS).MethodsLong-range optical coherence tomography of the adult subglottis and trachea was performed during suspension microlaryngoscopy before and after endoscopic treatment for SGS. The anteroposterior and transverse diameters, cross-sectional area (CSA), distance from the vocal cords, and length of the SGS were measured using a MATLAB software. Pre-intervention and postintervention airway dimensions were compared. Three-dimensional volumetric airway reconstructions were generated using medical image processing software (MIMICS).ResultsIntraoperative LR-OCT imaging was performed in 3 patients undergoing endoscopic management of SGS. Statistically significant differences in mean anteroposterior diameter (P < .01), transverse diameter (P < .001), and CSA (P < .001) were noted between pre-intervention and postintervention data. Three-dimensional airway models were viewed in cross-sectional format and via virtual "fly through" bronchoscopy.ConclusionsThis is the first report of intraoperative LR-OCT of the subglottic and tracheal airway before and after surgical management of SGS in humans. Long-range optical coherence tomography offers a practical means to measure the dimensions of SGS and acquire objective data on the response to endoscopic treatment of SGS

    Intraoperative long range optical coherence tomography as a novel method of imaging the pediatric upper airway before and after adenotonsillectomy.

    No full text
    Background/objectivesWhile upper airway obstruction is a common problem in the pediatric population, the first-line treatment, adenotonsillectomy, fails in up to 20% of patients. The decision to proceed to surgery is often made without quantitative anatomic guidance. We evaluated the use of a novel technique, long-range optical coherence tomography (LR-OCT), to image the upper airway of children under general anesthesia immediately before and after tonsillectomy and/or adenoidectomy. We investigated the feasibility of LR-OCT to identify both normal anatomy and sites of airway narrowing and to quantitatively compare airway lumen size in the oropharyngeal and nasopharyngeal regions pre- and post-operatively.Methods46 children were imaged intraoperatively with a custom-designed LR-OCT system, both before and after adenotonsillectomy. These axial LR-OCT images were both rendered into 3D airway models for qualitative analysis and manually segmented for quantitative comparison of cross-sectional area.ResultsLR-OCT images demonstrated normal anatomic structures (base of tongue, epiglottis) as well as regions of airway narrowing. Volumetric rendering of pre- and post-operative images clearly showed regions of airway collapse and post-surgical improvement in airway patency. Quantitative analysis of cross-sectional images showed an average change of 70.52mm(2) (standard deviation 47.87mm(2)) in the oropharynx after tonsillectomy and 105.58mm(2) (standard deviation 60.62mm(2)) in the nasopharynx after adenoidectomy.ConclusionsLR-OCT is an emerging technology that rapidly generates 3D images of the pediatric upper airway in a feasible manner. This is the first step toward development of an office-based system to image awake pediatric subjects and thus better identify loci of airway obstruction prior to surgery

    An In-Situ Thermogravimetric Study of Pyrolysis of Rice Hull with Alkali Catalyst of CaCO<inf>3</inf>

    No full text
    © Published under licence by IOP Publishing Ltd. Pyrolysis of rice hull (RH) with the presence of CaCO3 catalyst was carried out in this study to understand the effect of alkali catalyst in the thermal degradation behaviour and evaluate the kinetic parameter of rice hull for bio-oil or syngas production. Five different heating rates of the pyrolysis experiments at 10, 20, 30, 50, and 100 Kmin-1 were carried out in thermogravimetric analysis (TGA) equipment. Model fitting kinetic Coats Redfern integral method was applied in this study to estimate the activation energy (EA) and pre-exponential (A) value of catalytic pyrolysis in RH. The results showed that the maximum degradation increased from 6.69 to 52.67 wt% min-1 as heating rates increases from 10 to 100 Kmin-1. Besides that, the EA of the catalytic pyrolysis for RH using CaCO3 catalyst 60.86 kJmol-1 which is lower than other similar pyrolysis reaction reported in literature i.e. 77.4 kJ/mol. Meanwhile, the A value for the catalytic pyrolysis for RH using CaCO3 catalyst was 4.68×1010 min-1 which is significantly higher than 1.1×106 min-1 as reported in literature for non-catalytic pyrolysis of rice husk
    corecore