13,549 research outputs found
Restoration of multichannel microwave radiometric images
A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation
Resolution enhancement of multichannel microwave imagery from the Nimbus-7 SMMR for maritime rainfall analysis
A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems
On the Analytic Structure of the Quark Self-Energy in Nambu-Jona- Lasinio Models
The self-energy of quarks is investigated for various models which are
inspired by the Nambu--Jona-Lasinio (NJL) model. Including, beyond the
Hartree-Fock approximation, terms up to second-order in the quark interaction,
the real and imaginary parts of scalar and vector components of the self-energy
are discussed. The second-order contributions depend on the energy and momentum
of the quark under consideration. This leads to solutions of the Dirac equation
which are significantly different from those of a free quark or a quark with
constant effective mass, as obtained in the Hartree-Fock approximation.Comment: 15 pages LaTeX, 6 figures can be obtained from author
Rank-ordered Multifractal Spectrum for Intermittent Fluctuations
We describe a new method that is both physically explicable and
quantitatively accurate in describing the multifractal characteristics of
intermittent events based on groupings of rank-ordered fluctuations. The
generic nature of such rank-ordered spectrum leads it to a natural connection
with the concept of one-parameter scaling for monofractals. We demonstrate this
technique using results obtained from a 2D MHD simulation. The calculated
spectrum suggests a crossover from the near Gaussian characteristics of small
amplitude fluctuations to the extreme intermittent state of large rare events.Comment: 4 pages, 5 figure
The Gamow-Teller States in Relativistic Nuclear Models
The Gamow-Teller(GT) states are investigated in relativistic models. The
Landau-Migdal(LM) parameter is introduced in the Lagrangian as a contact term
with the pseudo-vector coupling. In the relativistic model the total GT
strength in the nucleon space is quenched by about 12% in nuclear matter and by
about 6% in finite nuclei, compared with the one of the Ikeda-Fujii-Fujita sum
rule. The quenched amount is taken by nucleon-antinucleon excitations in the
time-like region. Because of the quenching, the relativistic model requires a
larger value of the LM parameter than non-relativistic models in describing the
excitation energy of the GT state. The Pauli blocking terms are not important
for the description of the GT states.Comment: REVTeX4, no figure
Fermion Masses and Mixings in GUTs with Non-Canonical U(1)_Y
We discuss fermion masses and mixings in models derived from orbifold GUTs
such that gauge coupling unification is achieved without low energy
supersymmetry by utilizing a non-canonical U(1)_Y. A gauged U(1)_X flavor
symmetry plays an essential role, and the Green-Schwarz mechanism is invoked in
anomaly cancellations. Models containing vector-like particles with masses
close to M_{GUT} are also discussed.Comment: 18 page
The Brunei Bay as an Effluent Receiving Waterbody: Observations during the Start-up Period of a Kraft Pulp and Paper Mill
The water quality of Brunei Bay, Malaysia, subsequent to receiving iffluent from a pulp and paper mill,
was monitored. Conventional water quality parameters such as dissolved oxygen, suspended solids, and
biochemical oxygen demand were used as indicators to compare the present status of the bay water quality
with that of the baseline. Generally, data gathered during the first 16 months of the mill operation did not
indicate marked changes in the bay water quality. Levels of suspended solids, total organic carbons, and
1, 1-dichlorodimethyl sulfone in the bay water were used as indicators in the determination of dispersion
pattern of the effluent in the coastal areas of the bay
Spectroscopy of Ultracold, Trapped Cesium Feshbach Molecules
We explore the rich internal structure of Cs_2 Feshbach molecules. Pure
ultracold molecular samples are prepared in a CO_2-laser trap, and a multitude
of weakly bound states is populated by elaborate magnetic-field ramping
techniques. Our methods use different Feshbach resonances as input ports and
various internal level crossings for controlled state transfer. We populate
higher partial-wave states of up to eight units of rotational angular momentum
(l-wave states). We investigate the molecular structure by measurements of the
magnetic moments for various states. Avoided level crossings between different
molecular states are characterized through the changes in magnetic moment and
by a Landau-Zener tunneling method. Based on microwave spectroscopy, we present
a precise measurement of the magnetic-field dependent binding energy of the
weakly bound s-wave state that is responsible for the large background
scattering length of Cs. This state is of particular interest because of its
quantum-halo character.Comment: 15 pages, 12 figures, 4 table
An automatic visual analysis system for tennis
This article presents a novel video analysis system for coaching tennis players of all levels, which uses computer vision algorithms to automatically edit and index tennis videos into meaningful annotations.
Existing tennis coaching software lacks the ability to automatically index a tennis match into key events, and therefore, a coach who uses existing software is burdened with time-consuming manual video editing. This work aims to explore the effectiveness of a system to automatically detect tennis events. A secondary aim of this work is to explore the bene- fits coaches experience in using an event retrieval system to retrieve the automatically indexed events. It was found that automatic event detection can significantly improve the experience of using video feedback as part of an instructional coaching session. In addition to the automatic detection of key tennis events, player and ball movements are automati- cally tracked throughout an entire match and this wealth of data allows users to find interesting patterns in play. Player and ball movement information are integrated with the automatically detected tennis events, and coaches can query the data to retrieve relevant key points during a match or analyse player patterns that need attention. This coaching software system allows coaches to build advanced queries, which cannot be facilitated with existing video coaching solutions, without tedious manual indexing. This article proves that the event detection algorithms in this work can detect the main events in tennis with an average precision and recall of 0.84 and 0.86, respectively, and can typically eliminate man- ual indexing of key tennis events
- …