51 research outputs found

    Machine learning aided carrier recovery in continuous-variable quantum key distribution

    Full text link
    The secret key rate of a continuous-variable quantum key distribution (CV-QKD) system is limited by excess noise. A key issue typical to all modern CV-QKD systems implemented with a reference or pilot signal and an independent local oscillator is controlling the excess noise generated from the frequency and phase noise accrued by the transmitter and receiver. Therefore accurate phase estimation and compensation, so-called carrier recovery, is a critical subsystem of CV-QKD. Here, we explore the implementation of a machine learning framework based on Bayesian inference, namely an unscented Kalman filter (UKF), for estimation of phase noise and compare it to a standard reference method. Experimental results obtained over a 20 km fibre-optic link indicate that the UKF can ensure very low excess noise even at low pilot powers. The measurements exhibited low variance and high stability in excess noise over a wide range of pilot signal to noise ratios. This may enable CV-QKD systems with low implementation complexity which can seamlessly work on diverse transmission lines.Comment: 7 pages, 10 figure

    Modulation leakage vulnerability in continuous-variable quantum key distribution

    Full text link
    Flaws in the process of modulation, or encoding of key bits in the quadratures of the electromagnetic light field, can make continuous-variable quantum key distribution systems susceptible to leakage of secret information. Here, we report such a modulation leakage vulnerability in a system that uses an optical in-phase and quadrature modulator to implement a single sideband encoding scheme. The leakage arises from the limited suppression of a quantum-information-carrying sideband during modulation. Based on the results from a proof-of-concept experiment, we theoretically analyse the impact of this vulnerability. Our results indicate that the leakage reduces the range over which a positive secret key can be obtained, and can even lead to a security breach if not properly taken into account. We also study the effectiveness of additional trusted noise as a countermeasure to this vulnerability.Comment: 12 pages, 6 figure

    Effect of Tween Series on Growth and cis-9, trans-11 Conjugated Linoleic Acid Production of Lactobacillus acidophilus F0221 in the Presence of Bile Salts

    Get PDF
    Cis-9, trans-11 conjugated linoleic acid (c9, t11 CLA) producing bacteria have attracted much attention as novel probiotics which have shown beneficial effects on host health. However, bile salts are able to inhibit bacterial growth and c9, t11 CLA production. For recovering growth and c9, t11 CLA production of Lactobacillus acidophilus F0221 in the presence of bile salts, Tween series (Tween 20, Tween 40, Tween 60 and Tween 80) were added in growth culture containing 0.3% oxgall. Results showed that the viable counts were significantly (P < 0.05) recovered to 8.58–8.75 log CFU/mL in the presence of all Tween treatments. However, recovery of c9, t11 CLA production was only demonstrated in the presence of Tween 80 (72.89 μg/mL). Stepwise increasing oxgall in a concentrations range from 0.1% to 0.9% according to human intestinal physiological environments, Tween 80 still showed significant (P < 0.05) recovery ability on growth (8.91–8.04 log CFU/mL) and c9, t11 CLA (69.22–34.27 μg/mL) production. The effect of Tween 80 on growth and production was also investigated in the presence of different types of bile salts (sodium salts of cholic acid (CA), deoxycholic acid (DCA), chendeoxycholic acid (CDCA), glycocholic acid (GCA) and taurocholic acid (TCA)). Results showed that Tween 80 could significantly (P < 0.05) recover c9, t11 CLA production in the presence of all types of bile salts, but the Tween 80 could only significantly (P < 0.05) recover viable counts of the strain in the presence of CA, DCA and CDCA. This recovery ability could be attributed to the protection of leakage of intracellular material. Additionally, although bile salts inhibited growth and c9, t11 CLA production by the growing cell, it promoted the c9, t11 CLA production by the resting cell

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process

    Get PDF
    Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus

    Towards optimum phase noise compensation for CV-QKD systems

    No full text
    We experimentally examine the performance of a machine learning based phase estimation and compensation framework for Gaussian modulated continuous variable quantum key distribution relative to a transmitted local oscillator and ideal phase compensation.</p

    Phase Compensation for Continuous Variable Quantum Key Distribution

    No full text
    The tracking and compensation of phase noise is critical to reducing excess noise for continuous variable quantum key distribution schemes. This work demonstrates the effectiveness of unscented Kalman filter for phase noise compensation.Comment: 2 pages, CLEO 201
    corecore