4 research outputs found

    Kernel-Segregated Transpose Convolution Operation

    Get PDF
    Transpose convolution has shown prominence in many deep learning applications. However, transpose convolution layers are computationally intensive due to the increased feature map size due to adding zeros after each element in each row and column. Thus, convolution operation on the expanded input feature map leads to poor utilization of hardware resources. The main reason for unnecessary multiplication operations is zeros at predefined positions in the input feature map. We propose an algorithmic-level optimization technique for the effective transpose convolution implementation to solve these problems. Based on kernel activations, we segregated the original kernel into four sub-kernels. This scheme could reduce memory requirements and unnecessary multiplications. Our proposed method was 3.09(3.02)× faster computation using the Titan X GPU (Intel Dual Core CPU) with a flower dataset from the Kaggle website. Furthermore, the proposed optimization method can be generalized to existing devices without additional hardware requirements. A simple deep learning model containing one transpose convolution layer was used to evaluate the optimization method. It showed 2.2× faster training using the MNIST dataset with an Intel Dual-core CPU than the conventional implementation

    Privacy-Preserving Deep Learning Model for Covid-19 Disease Detection

    Get PDF
    Recent studies demonstrated that X-ray radiography showed higher accuracy than Polymerase Chain Reaction (PCR) testing for COVID-19 detection. Therefore, applying deep learning models to X-rays and radiography images increases the speed and accuracy of determining COVID-19 cases. However, due to Health Insurance Portability and Accountability (HIPAA) compliance, the hospitals were unwilling to share patient data due to privacy concerns. To maintain privacy, we propose using differential private deep learning models to secure the patients' private information. The dataset from the Kaggle website is used to evaluate the designed model for COVID-19 detection. The EfficientNet model version was selected according to its highest test accuracy. The injection of differential privacy constraints into the best-obtained model was made to evaluate performance. The accuracy is noted by varying the trainable layers, privacy loss, and limiting information from each sample. We obtained 84\% accuracy with a privacy loss of 10 during the fine-tuning process

    Privacy-Preserving Deep Learning Model for Covid-19 Disease Detection

    Full text link
    Recent studies demonstrated that X-ray radiography showed higher accuracy than Polymerase Chain Reaction (PCR) testing for COVID-19 detection. Therefore, applying deep learning models to X-rays and radiography images increases the speed and accuracy of determining COVID-19 cases. However, due to Health Insurance Portability and Accountability (HIPAA) compliance, the hospitals were unwilling to share patient data due to privacy concerns. To maintain privacy, we propose differential private deep learning models to secure the patients' private information. The dataset from the Kaggle website is used to evaluate the designed model for COVID-19 detection. The EfficientNet model version was selected according to its highest test accuracy. The injection of differential privacy constraints into the best-obtained model was made to evaluate performance. The accuracy is noted by varying the trainable layers, privacy loss, and limiting information from each sample. We obtained 84\% accuracy with a privacy loss of 10 during the fine-tuning process

    A reliable diabetic retinopathy grading via transfer learning and ensemble learning with quadratic weighted kappa metric

    No full text
    Abstract The most common eye infection in people with diabetes is diabetic retinopathy (DR). It might cause blurred vision or even total blindness. Therefore, it is essential to promote early detection to prevent or alleviate the impact of DR. However, due to the possibility that symptoms may not be noticeable in the early stages of DR, it is difficult for doctors to identify them. Therefore, numerous predictive models based on machine learning (ML) and deep learning (DL) have been developed to determine all stages of DR. However, existing DR classification models cannot classify every DR stage or use a computationally heavy approach. Common metrics such as accuracy, F1 score, precision, recall, and AUC-ROC score are not reliable for assessing DR grading. This is because they do not account for two key factors: the severity of the discrepancy between the assigned and predicted grades and the ordered nature of the DR grading scale.  This research proposes computationally efficient ensemble methods for the classification of DR. These methods leverage pre-trained model weights, reducing training time and resource requirements. In addition, data augmentation techniques are used to address data limitations, improve features, and improve generalization. This combination offers a promising approach for accurate and robust DR grading. In particular, we take advantage of transfer learning using models trained on DR data and employ CLAHE for image enhancement and Gaussian blur for noise reduction. We propose a three-layer classifier that incorporates dropout and ReLU activation. This design aims to minimize overfitting while effectively extracting features and assigning DR grades. We prioritize the Quadratic Weighted Kappa (QWK) metric due to its sensitivity to label discrepancies, which is crucial for an accurate diagnosis of DR. This combined approach achieves state-of-the-art QWK scores (0.901, 0.967 and 0.944) in the Eyepacs, Aptos, and Messidor datasets
    corecore