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Abstract

Recent studies demonstrated that usage of
X-ray radiography images showed higher accuracy
than Polymerase Chain Reaction (PCR) testing
for COVID-19 detection. Deep learning models
through transfer learning using X-ray radiography
images helped increase the speed and accuracy
of determining COVID-19 cases compared to the
traditional approaches. However, due to Health
Insurance Portability and Accountability (HIPAA)
compliance, the hospitals were unwilling to share
patient data directly with the public due to privacy
concerns. In addition, general deep learning models
are prone to extract sensitive information from the
input data, resulting in vulnerability to the patient’s
privacy and cannot be used for real-world situations.
We propose a privacy-preserving deep learning model
for COVID-19 disease detection using a Differential
Private (DP) Adam with a transfer learning approach
to avoid these problems. Results indicated that the
proposed model surpassed the performance of the
existing models and obtained 84% of accuracy with a
privacy loss ϵ of 10 for classifying the infected patients
with COVID-19.

Keywords: deep learning, DP Adam optimizer,
privacy loss, pre-trained model, transfer learning

1. Introduction

COVID-19 is an infectious disease caused by the
SARS-CoV-2 virus that will affect the respiratory
system of the infected patient (World Health
Organization COVID-19, 5/26/2022 accessed). WHO
declared the COVID-19 outbreak a global pandemic
in March 2020 (Cucinotta et al., 2020). Precise
earlier detection can limit the spread of COVID-19,
while it is challenging for individuals in developing
nations to access robust testing equipment. (Y. Wang
et al., 2020) stated that the images of chest x-ray
radiography outperformed traditional laboratory testing

for identifying COVID patients. Thus, X-ray imaging
can be considered the best choice for detecting the
presence of COVID-19, and it can help limit the spread
of the disease to a great extent considering the global
crisis.

Deep learning models showed promising results
in detecting the COVID-19 infected patient with the
help of chest radiography images. Thus, the deep
learning models for COVID-19 detection are selected
such that they can be easily deployed to handheld
devices like smartphones (Naylor, 2018). Researchers
need Chest X-rays radiography (CXR) (Cleverley et al.,
2020) as the primary data source for creating a dataset
and developing a better model to predict the disease.
However, General Data Protection states that the patient
data should maintain privacy to provide security from
malicious attacks (Voigt et al., 2017; Liu et al., 2020).
Therefore, hospitals are unwilling to share the data due
to privacy concerns of the patients according to their
state laws to avoid data breaches (Landi, 6/14/2022
accessed). Furthermore, deep learning models are also
prone to attacks by intruders, especially medical data,
which can harm society and cause problems for hospital
management if they share the models trained on the
available data samples (M. Wu et al., 2020). Therefore,
there is a dire need for modifying deep learning models
to protect the patient’s information from information
stealing and also should benefit society in detecting
diseases.

Prior research primarily focused on improving the
accuracy of detecting COVID-19 disease by assuming
the data samples are available publicly (Shoeibi et
al., 2020). However, it is not easy to get patients’
data samples due to privacy laws enacted in some
countries. To solve this problem, some researchers
focused on maintaining privacy by injecting noise
into the output labels using the Private Aggregation
of Teacher Ensembles (PATE) approach (Lange, n.d.;
Müftüoğlu et al., 2020). The disadvantage of these
previous works is that privacy loss will be more for
obtaining the best performing model for COVID-19
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detection. In this proposed work, we will try to create
a balance between privacy loss and performance using
a DP Adam optimizer injected into the neural network.
The final goal of the proposed model will be attaining
the minimum privacy loss with maximum performance.
Popular frameworks like Opacus in PyTorch framework
(Yousefpour et al., 2021) and Tensorflow privacy in
Tensorflow framework (Abadi et al., 2016) tried to
solve these issues by developing differential private deep
learning models. These frameworks help inject the noise
at the different stages in the deep learning model during
the training phase. To the best of our knowledge, we
are the first to propose the privacy-preserving model for
COVID-19 detection using a DP Adam optimizer and
obtain better results than previous deep learning models.

In summary, the contributions of the paper are
explained as follows:

• We propose a privacy-preserving deep learning
model for COVID-19 detection using chest X-ray
images with the help of a DP Adam optimizer.
The proposed model will help limit attacks from
stealing the patients’ information from intruders.

• We finetune the EfficientNet model versions to
get the best-performing model for COVID-19
detection without injecting privacy constraints
during training. The obtained model is considered
the privacy-preserving model for COVID-19
detection.

• We investigate the performance of the proposed
model by varying the number of trainable layers
with privacy constraints injected into the Adam
optimizer during training. Our experimental
results show that increasing the number of
trainable layers significantly improved accuracy.

The rest of the paper is organized as follows: Section
2 overviews the background and the previous related
research works. Then, Section 3 explains the process
of designing the privacy-preserving deep learning model
for COVID-19 detection. Then, Section 4 presents the
results obtained from the proposed model, and Section
5 discusses future research directions for the proposed
work. Finally, we conclude the presented work in
Section 6.

2. Background and literature review

Deep learning models have significantly contributed
to medical applications primarily related to image-based
diagnosis. The performance of deep learning models
for computer vision problems in the medical field is
promising (Lundervold et al., 2019). Furthermore, deep

learning models showed their importance in classifying
diseases such as lung disease, malaria, various cancers
like breast and lung cancer, etc (Kieu et al., 2020).
Last but not least, privacy-preserving deep learning
models became necessary in the medical field because
of privacy concerns.

2.1. Differential Privacy

Differential Privacy (DP) is considered a standard
technique for quantifying the disclosure of individual
information from the given input data (Dwork et al.,
2006; Dwork, Roth, et al., 2014). The primary purpose
of DP is to limit any particular user’s information
by perturbing the model’s parameters during training
in the released model. DP can be quantified using
two parameters, namely ϵ and δ. ϵ measures the
difference in change between two datasets that differ by
a single sample, and δ is the probability of information
accidentally being leaked. The smaller ϵ and δ provide
more privacy for the individual. DP can be defined
as below: A randomized algorithm A: D → R with
domain D and range R is (ϵ,δ)- differential private if for
any subset of outputs S ⊆ R and for any two adjacent
inputs d, d′ ∈ : Pr[A(d) ∈ S] ≤ eϵPr[A(d′) ∈ S] + δ.
In a deep learning context, differential privacy can be
treated as sharing general information about a dataset
by securing individual information. The researcher’s
main goal is to find the trade-off between the maximum
information extraction needed to perform the given task
without compromising the individual’s privacy (Dwork,
2008). Differential privacy has become critical usage
in various areas especially in government agencies
(Drechsler, 2021), the health care sector (Ficek et al.,
2021), service providers (T. Wang et al., 2020; Gai et
al., 2019) etc due to data privacy regulations.

2.2. Differential private noise mechanisms

Two popular noise mechanisms can be applied to
deep learning models (J. Zhao et al., 2019), namely,
Laplacian Mechanism (L. Zhao et al., 2019), and
Gaussian Mechanism (McMahan et al., 2018). Gaussian
Mechanism (GM) achieves better privacy than the
Laplacian mechanism. This is because GM adds noise
drawn from normal distribution to the given input data.
The Gaussian Mechanism will not satisfy the pure
ϵ-differential privacy but does satisfy (ϵ, δ)-differential
privacy. Therefore, the Gaussian Mechanism that is
ϵ, δ-differential private provided with standard deviation
σ should satisfy the Equation 1.

σ ≥
√
2log(

1.25

δ
)
∆2f

ϵ
(1)
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In (Bu et al., 2020), the authors released a deep
learning model with Differential Privacy that was added
using Gaussian noise code in the Tensorflow privacy
framework. Also, the GM is popular and has a
benefit for training deep learning models using l2 norm
instead of l1 norm. Moreover, GM requires lesser
noise compared to the Laplacian mechanism. Since
the parameters of deep learning models are large in
number, GM with l2 sensitivity is used more often than
the Laplacian mechanism to get better models.

2.3. Rényi Differential Privacy

Rényi Differential Privacy (RDP) is considered
as the new generalization of ϵ- differential privacy
introduced in (Mironov, 2017) by Marinov that is
comparable to the (ϵ, δ) version. Its main advantage is
that it is easier to interpret than (ϵ, δ)-DP. It is considered
a natural relaxation of differential privacy based on
Rényi divergence. Given the random variables X and
Y , which can take on n possible values, each with
positive probabilities pi and qi respectively, then the
Rényi divergence of X from Y can be defined by the
Equation 2:

Dα(X||Y ) = 1
(α−1) log(

n∑
i=1

pα
i

qα−1
i

) (2)

for α > 0 and not equal to 1. However, special cases
will be obtained when α = 0, 1,∞. As α converges
to 1, Dα converges to the Kullback-Leibler divergence
(Joyce, 2011). RDP has nice composition properties that
help compute the model’s total privacy budget. RDP
privacy falls somewhere in between ϵ-DP and (ϵ, δ)-DP.

2.4. Literature review

In (Shoeibi et al., 2020) gave a comprehensive
overview of COVID-19 disease detection using various
deep learning models. However, some models have
achieved 100% accuracy using X-ray, CT-scan, and
LUS images with limited data samples of below
5,000. Later, the Kaggle website made a COVID-19
detection challenge and showed that the EfficientNet
pre-trained model performed well compared to other
models (Website, 5/26/2022 accessedb). (Chetoui et al.,
2021) used the EfficientNet model for finetuning and
achieved the accuracy of 99% for detecting COVID-19
samples. (Chowdhury et al., 2020) also proposed
an ensemble of deep convolutional neural networks
based on EfficientNet obtained 97% of accuracy for
COVID detection. (Jaiswal et al., 2020) proposed
the CovidPen model for detecting COVID-19 disease
using Chest X-ray and CT-scan showed the highest

accuracy of 96% and 85%, respectively. Also, (Alquzi
et al., 2022) finetuned the EfficientNet B-3 model
for COVID-19 disease detection and got 99% of test
accuracy. (Lee et al., 2022) enhanced the performance
of the DenseNet201 for COVID-19 detection using
data augmentation, adjusted class weights, and early
stopping and finetuning techniques. Results showed
the outstanding performance of 99.9% accuracy with
a better F1 score of 0.98. (Luz et al., 2022)
generated the normal, pneumonia, and COVID-19
infected samples using Deep Convolutional Generative
Adversarial Networks and achieved the promising result
of 0.95 in terms of area under the curve (AUC)
with the help of EfficientNet B3 model. (Huang et
al., 2022) obtained the highest performance from the
proposed LightEfficientNetV2 model of about 97.73%
accuracy. However, designing deep learning models
without differential privacy can threaten individuals, and
because of government regulations in certain countries,
hospitals are unwilling to share the data with the public
(M. Wu et al., 2020; R. Wu et al., 2012). So there is a
dire need to develop privacy-preserving deep learning
models to benefit society without compromising the
privacy of the individuals.

The algorithms related to differential privacy
are continuously developed, especially in healthcare
applications (Ficek et al., 2021). Therefore, hospital
management can share the trained differential private
models with the public will benefit society. PATE
approach was used by (Müftüoğlu et al., 2020) for
privacy-enhanced COVID-19 disease detection and
showed the accuracy of 71% with ϵ of 5.9 and the
original model without applying privacy constraints
showed an accuracy of 94.7%. (Lange, n.d.) also used
the PATE approach for COVID-19 disease detection
and showed the accuracy of 75% with ϵ of 10.
(Boulila et al., 2022) proposed the privacy-preserving
deep learning model approach by modifying the input
images using a homomorphic encryption technique and
trained using MobileNetV2. The proposed model
showed a comparable accuracy of 93.3% with the
model with unencrypted input images. However,
most of the existing privacy-preserving models showed
limited performance because of problems in extracting
the required information due to conditions during the
training phase. So, there is necessary to design a
deep learning model to address this issue without
compromising data privacy.

3. Methodology

This section will explain the process of building the
privacy-preserving deep learning model for COVID-19
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disease detection. First, the procedure of selecting the
best pre-trained model for the chosen application will
be illustrated. Later in this section will give an overview
of the general structure for the privacy-preserving deep
learning model to enhance the privacy of the input
samples during training using a differential private (DP)
optimizer. After the working of DP Adam optimizer
is explained in detail with an algorithm. At the end
of this section will demonstrate the steps for obtaining
the privacy-preserving deep learning for detecting the
infected COVID-19 samples.

3.1. Pretrained model selection and its
overview

Previous works show that the EfficientNet
pre-trained model has proven to be the best compared
to other deep learning models for COVID-19 disease
detection from X-ray radiography images. (Tan et al.,
2019) proposed the various versions of EfficientNet
models based on scaling the width, depth, and
resolution with a fixed ratio. Thus, this property helps
the researchers select the best version of the EfficientNet
model based on the chosen application. Additionally,
the EfficientNet model requires fewer parameters than
the existing pre-trained models because of having
depthwise separable and pointwise convolution layers
instead of conventional convolution layers. This
replacement can help the EfficientNet model to deploy
on mobile devices, which can be helpful for healthcare
applications.

Furthermore, the addition of squeeze and excitation
blocks helped the model improve performance by
mapping the channel dependency across the input
feature maps with access to global information (Hu et
al., 2018). There are multiple versions of EfficientNet
models, namely from B0 to B7. Neural Architecture
Search initially defines the structure for the EfficientNet
B0 model. Later, with the help of the compound scaling
technique and the information from the previous model
versions was used to get the subsequent versions.

3.2. Privacy-preserving deep learning model

The general structure of the chosen
privacy-preserving deep learning model having a noisy
optimizer is depicted clearly in Fig. 1. In this process,
the noisy optimizer will replace the general optimizer,
and all other steps for training the neural network will
still hold the same. During the training phase of the
model, the preprocessed image samples are fed directly
into the model. During the preprocessing, the images
are converted to the corresponding size accordingly to
the model requirement. After the forward propagation

Figure 1. The general structure of privacy-preserving

deep learning model

process, the model predicts the output for the input
image samples. Then, the loss function gives the score
based on the actual and predicted values for the given
inputs from the dataset and the model respectively.
Later, the optimizer updates the network weights by
calculating the gradients corresponding to the selected
loss function (Sun et al., 2019). The obtained gradients
act as information extractors from the given image
samples. Thus, clipping the gradients and the injection
of the noise selectively into the optimizer limits the
information extraction, and this process converts the
general optimizer into a noisy optimizer.

Figure 2. Overview of a general optimizer and a

noisy optimizer

Fig. 2 shows the difference between the general
optimizer and the noisy optimizer. The gradients from
the individual samples in a batch are averaged directly
before updating the parameters for the next iteration
using a general optimizer. This process causes the
information extraction from the specific samples can be
more which can cause harm to the related subjects by
the intruders if the trained models are available publicly.
To avoid this situation, adding noise at the different
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stages in the neural network model can limit the leakage
of sensitive information from the given input samples.
Among them, adding the noise at the optimizer level
will help reduce the overfitting during the training phase
of the model, resulting in improved performance of
the trained model. Additionally, limiting the gradient
information flow at this level help to achieve maximum
performance without compromising the privacy of the
given input data. Thus a noisy optimizer is made by
clipping the gradients before averaging and adding the
noise while updating the parameters. The optimizer
selection also plays a crucial role in faster convergence
of the deep neural network model. Adam optimizer
showed many advantages like efficient computation,
requiring less memory, and time for hyperparameter
tuning is considered for the proposed model. Computing
the overall privacy cost at the end makes the noisy
optimizer to DP optimizer.

3.3. DP Adam optimizer

Algorithm 1 DP Adam Optimizer
Input: dataset S = x1, ..., xn, loss function l(θ, x)
Parameters: initial weights θ0, learning rate ηt,
sub-sampling probability p, number of iterations T,
noise scale σ, gradient norm bound R, momentum
parameters (β1, β2), initial momentum m0, initial past
squared gradient u0, and a small constant ϵ > 0.
for t = 0, . . . , T − 1 do

Take a Poisson subsample It ⊆ {1, . . . , n} with
subsample probability p

for i ∈ It do
v
(i)
t ← ∇θl(θt, xi)

v̄
(i)
t ← v

(i)
t /max{1, ||v(i)t ||2/R}

▷ — Clip gradient

ṽt ← 1
|It|

(∑
i∈It

v
(i)
t + σR.N (0, I))

▷ —Apply Gaussian Mechanism
mt ← β1mt−1 + (1− β1)ṽt

ut ← β2ut−1 + (1− β2)(ṽt ⊙ ṽt)
▷ – ⊙ is the Hadamard product

wt ← mt/(
√
ut + E)

▷ – Component wise division
θt+1 ← θt − ηtwt

Output: θt and compute the overall privacy cost (ϵ,
δ) using a privacy accountant mechnaism

The general implementation of the DP Adam
optimizer is used to train the privacy-preserving deep
learning model in Algorithm 1 (Bu et al., 2020). This
optimizer follows similar steps to the general Adam

optimizer with minor changes. For this algorithm,
input will be the samples S from the dataset and the
selected loss function l(θ, x) based on the application.
The optimizer will update the neural network model
parameters considered as output for every iteration
of given batch samples. This updating process
will have two additional steps for the noisy Adam
optimizer compared to the general procedure. First,
we select Poisson subsamples from the given data with
a probability of p. Then, after choosing the specific
sample, its gradient is calculated, and the obtained value
is clipped for all the selected batch samples. Next,
noise is added after getting the clipped gradients for
each sample using the Gaussian Mechanism. Then after
the first momentum and second momentum, estimates
(mt and ut) are calculated using momentum parameters
β1 and β2, respectively. In the end, parameters are
updated using component-wise division and can be used
for the next iteration. But before starting the next
iteration, the optimizer must compute the privacy cost
based on the given privacy accountant mechanism. This
step will convert the noisy Adam optimizer to the DP
Adam optimizer.

3.4. Privacy-Preserving model for predicting
COVID-19

Figure 3. The selection process of the best version

among pretrained Efficient Net models for COVID-19

disease detection

For obtaining the privacy-preserving model for
COVID-19 disease detection, there is a need to get the
best-performing deep learning model without privacy
constraints injected into it. The general procedure for
identifying the best performing model can be seen in
Fig. 3. Here, images are preprocessed according
to the requirement of the selected version and fed as
input to the model. Then classifier design is made by
placing the fully connected layer with one output neuron
according to the chosen model for COVID-19 disease
prediction. The hyperparameters are obtained from the
best-performing model in the Kaggle competition for
COVID-19 disease detection using X-ray radiography
images (Sharman, 5/26/2022 accessed). The finetuning
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process is made using the above hyperparameters for
all EfficientNet models to achieve the best-performing
model.

EfficientNet-B2 showed a higher performance based
on test accuracy for predicting the infected samples
and is used as the base structure for designing a
privacy-preserving deep learning model. First, the
privacy engine is attached to the Adam Optimizer
directly with the help of the Opacus framework.
Through the privacy accounting mechanism, this
framework will keep track of the privacy budget during
the training stage based on Rényi Differential Privacy
in the background. The privacy engine helps identify
the privacy loss spent at any given point by adding early
stopping and real-time monitoring features. The model
validation module from the Opacus library makes the
given deep neural network compatible with the privacy
engine attached to the optimizer. These changes include
changing the particular layers like Batch Normalization
(Bjorck et al., 2018) that have information from all
the samples with Instance Normalization (Ulyanov et
al., 2016) and Group Normalization (Y. Wu et al.,
2018) to keep track of individual sample gradients
during the training stage. Then the proposed model
is finetuned by varying the trainable layers to find the
best-performing model with the above characteristics.
The obtained results showed a significant improvement
in the performance with an increase in the number of
trainable layers.

Healthcare services can use the above process by
training the model without adding privacy constraints to
achieve the maximum performance for the given task
as an initial step. Then later, the privacy-preserving
model can be developed with the same structure
obtained from the previous step by adding the
privacy constraints into the model. Finally, the
privacy-preserving is finetuned accordingly to achieve
comparable performance with the original model. After,
the obtained privacy-preserving model can be shared
with the public by discarding the original model. This
process can help low-income countries rely on deep
learning models for disease detection without needing
to access robust testing equipment.

4. Results

4.1. Dataset description

For evaluating the proposed COVID-19 disease
detection model, we used a dataset from the Kaggle
website (Website, 5/26/2022 accesseda). The samples
are X-ray radiography images from the healthcare
centers, available on Kaggle website for researchers.

Efficient Net
Pre-trained
model versions

Valid Acc Test Acc

B 0 0.98 0.91
B 1 0.98 0.94
B 2 0.98 0.95
B 3 0.98 0.94
B 4 0.98 0.94
B 5 0.98 0.91
B-6 0.98 0.90

Table 1. Validation Accuracy (Valid Acc) and Test

Accuracy (Test Acc) for different versions of

Efficient-Net Model

The total number of samples in the dataset used
for training is 30,492; among them, 16,490 are
COVID-positive, and 13,992 are COVID-negative.
They provided only 400 samples to evaluate the model’s
performance on test data. However, 20% samples from
the training dataset were used for validation purposes to
follow the standard testing process. The model designed
is a supervised model. The samples are labeled 1 or
0 based on COVID-infected samples or not. Since the
dataset is only slightly imbalanced, we didn’t use any
data augmentation techniques to increase the number of
samples to train the model.

4.2. Evaluation of pretrained EfficientNet
model versions

We divided the data samples into 80% for training
and 20% for validation from the selected dataset.
The number of data samples used for testing is 400,
which were given separately in the dataset directly for
evaluating the designed model. Therefore, the accuracy
obtained from the validation dataset can be considered
validation accuracy, and the accuracy obtained from test
data samples is deemed as test accuracy. We used Binary
Cross-Entropy Loss as the loss criterion and Adam
optimizer for finetuning the pre-trained EfficientNet
model versions. The learning rate of the optimizer is
0.08, the number of epochs is 30, and the batch size of
32 is used for training the model.

Table 1 represents the validation and test accuracy
obtained for different versions of the EfficientNet
model. The EfficientNet model versions are trained
generally without injecting privacy constraints using
the PyTorch framework (Paszke et al., 2019). Since
the validation accuracy for all the models remains
the same for all versions with 98% accuracy, we
considered test accuracy as the best choice for selecting
the best-performing model for further evaluation.
Among all the model versions, EfficientNet-B2 showed
the highest performance for test data with 95%
accuracy and is considered the base structure for
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the privacy-preserving model. Since all EfficientNet
model versions performed well on validation accuracy,
any model version can be used for developing the
privacy-preserving deep learning model. For simplicity
in choosing one model, we rely on the test accuracy, but
it is not required to select the best-performing model.

4.3. Evaluation of the privacy-preserving deep
learning model

1st case 2nd case

ϵ
Max
grad
norm

Valid
Acc

Test
Acc

Valid
Acc

Test
Acc

1.0 1 0.93 0.80 0.91 0.74
2.0 1 0.93 0.83 0.92 0.81
10.0 1 0.94 0.82 0.93 0.80
100 1 0.94 0.83 0.95 0.86
1000 1 0.93 0.84 0.95 0.89
1.0 0.8 0.93 0.82 0.91 0.76
2.0 0.8 0.93 0.82 0.93 0.79
10 0.8 0.92 0.83 0.95 0.84
100 0.8 0.94 0.83 0.95 0.86
100 0.8 0.94 0.83 0.95 0.89
1000 0.8 0.94 0.83 0.90 0.70
1.0 0.6 0.93 0.80 0.93 0.79
2.0 0.6 0.93 0.80 0.94 0.84
10 0.6 0.93 0.80 0.94 0.83
100 0.6 0.93 0.83 0.95 0.90
1000 0.6 0.94 0.83 0.92 0.78
1.0 0.4 0.92 0.78 0.93 0.78
2.0 0.4 0.93 0.80 0.93 0.84
10 0.4 0.93 0.81 0.94 0.85
100 0.4 0.93 0.82 0.95 0.88
1000 0.4 0.93 0.84 0.93 0.84

Table 2. Validation Accuracy (Valid Acc) and Test

Accuracy (Test Acc) for (i) by finetuning the last

block of EfficientNet-B2 model (1st case) (ii) by

finetuning the last two blocks of EfficientNet-B2

model (2nd case)

Authors Method Epsilon Accuracy
(Müftüoğlu et al., 2020) PATE 5.9 71%
Proposed DPAdam 6 82%
(Lange, n.d.) PATE 10 75%
Proposed DPAdam 10 84%

Table 3. Comparison of Test Accuracy for

Differential Privacy applied to the Deep Learning

models

For evaluating the privacy-preserving deep learning
model, we finetuned the EfficientNet-B2 model, which
was considered the best version from the previous
analysis. The same data distribution, along with the
loss function, is still carried out here to evaluate the
model’s performance. The private engine attachment
to the optimizer version will change to the DP Adam
optimizer with the constraints explained in Section 3.3

during the training phase. The only hyperparameter
added for the proposed model is δ, which is considered
the probability of failure, and its value is 1e−5, while all
others remain the same for training the model.

The privacy loss ϵ of zero means that the model is
considered random with utmost privacy, whereas the
privacy budget ϵ is inf , indicating no privacy for the
trained model. Maximum gradient normalization is
the maximum amount of information obtained from
a given sample through gradients during the training
process. This parameter can be regarded as clipping
the gradients to the given constant value when it is out
of the given range to limit the information extraction.
As a researcher, we need to find the limit of ϵ such
that the data privacy leakage should be minimum
while extracting the maximum information from the
given input data for training the privacy-preserving
model. Opacus library provides the modulator fix
option to make the normal model suitable for the
privacy-preserving application.

Initially, the fully connected layer was made
trainable, resulting in a limited performance with
60-65% of accuracy from the test data samples. Later
the last block of the selected model is made trainable
along with the fully connected layer, which can be seen
in Table 2. Results showed that validation and test
accuracy increase when ϵ increases for fixed maximum
gradient normalization values. The proposed model
achieved the highest test accuracy of 84%, but the
privacy loss ϵ needed is 1,000. Similarly in the second
case, the last two blocks of the selected model with
a fully connected layer are made trainable and noted
down the corresponding performance. Compared to the
previous version, this model showed a higher accuracy
of 84% with a privacy loss ϵ of 10. The highest test
accuracy obtained by varying the last two blocks is 90%,
with a privacy loss ϵ of 100 and a maximum gradient
normalization value of 0.6. An interesting phenomenon
happened in the second case: when maximum gradient
normalization varied, the accuracy sometimes decreased
even if privacy loss ϵ increased. This can be observed for
privacy loss ϵ changed from 100 to 1000 for maximum
gradient normalization falls below 1. The reason might
be increasing the number of trainable layers might need
more gradient information, even though allowing more
privacy loss to obtain higher accuracy (Andrew et al.,
2021). The results show that the privacy-preserving
deep learning model achieves comparable performance
to the model without injecting any privacy constraints.

Table 3 compares the accuracy obtained for
COVID-19 detection when privacy constraints are
injected into the model. The previous approach
proposed by (Müftüoğlu et al., 2020) showed an
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accuracy of 71% using PATE analysis for COVID-19
detection. The proposed model showed a higher
accuracy of 82% with the privacy loss nearly to 6.
Also, (Lange, n.d.) showed an accuracy of 75% while
the proposed approach showed 84% accuracy with
ϵ of 10. Our proposed method showed the best
performance in both cases compared to these works
with the same privacy loss. PATE analysis needs
accessibility to the public data samples for training
the model using semi-supervised settings. However,
in real-life scenarios, the accessibility of data samples
from health care centers might not be readily available,
and applying PATE is impossible for these situations
(Uniyal et al., 2021). In the case of the proposed
privacy-preserving model, there is no need for publicly
available samples to train the model. The healthcare
centers can train the models with privacy constraints,
and the user can use their model directly without the
need to collect the samples for training purposes.

5. Future work

The healthcare applications like cancer
detection, diabetic retinopathy grading analysis, etc.
(Sai Venkatesh et al., 2022; Chilukoti et al., 2022; Islam
et al., 2022) can use the proposed privacy-preserving
deep learning model with a DP Adam optimizer to
achieve better performance. Furthermore, the proposed
work can also be applied in federated learning settings
by making individual privacy-preserving models before
aggregating them into the central server (Yang et al.,
2019; Wei et al., 2020). In the near future, secure
multiparty computation (Cramer et al., 2015) can also
be integrated to train the deep learning models by
encryption from Crypten library (Knott et al., 2021)
proposed by Facebook. Moreover, the fixed clipping
method in the proposed model can be replaced with
the adaptive clipping mechanism and adding the
Gaussian noise before aggregating can improve the
performance (Andrew et al., 2021). To further enhance
the performance of the privacy-preserving model,
honest hyperparameter selection is essential and can be
achieved through the approach provided by (Mohapatra
et al., 2022). The proposed-privacy preserving model
can also be applied to Natural Language Processing
(NLP) applications like Spam Detection, Fake-news
Detection (Tida & Hsu, 2022; Tida et al., 2022) etc.

6. Conclusion

individual privacy has become crucial to be
compliant the government regulations and HIPPA.
There is high demand for privacy-preserving

deep learning models by limiting the extraction of
information. This manuscript provided a DP Adam
optimizer based privacy-preserving deep learning
model for detecting COVID-19 samples using X-ray
radiography images. The proposed model achieved
84% of accuracy with privacy loss ϵ of 10 by finetuning
the last two blocks of the EfficientNet-B2 model and
achieved better performance than the previous works.
Furthermore, the results showed that increasing the
number of trainable layers improved the performance
of the proposed model with the same privacy loss ϵ.
The proposed approach serve as the benchmark for
other health care applications, and contribute other
researchers in getting the best-performing model with
the help of a DP Adam optimizer.
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