238 research outputs found

    Probing the ultimate limits of plasmonic enhancement.

    Get PDF
    Metals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the intrinsic nonlocality of its dielectric response. A semiclassical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. To demonstrate the accuracy of this model, we studied optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems.Supported by Air Force Office of Scientific Research grant FA9550-09-1-0562 and by the Army Research Office through Multidisciplinary University Research Initiative grant W911NF-09-1-0539. Also supported by the Leverhulme Trust and the Marie Curie Actions (J.B.P., S.A.M., and A.I.F.-D.), NIH grant R21EB009862 (A.C.), and NIH F32 award F32EB009299 (R.T.H.)

    Ligand-Receptor Interactions

    Full text link
    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the interest of biologists to the kinetic and mechanical properties of cell membrane receptors. The aim of this review is to give a description of these advances that benefitted from a largely multidisciplinar approach

    Development of a Tetrameric Streptavidin Mutein with Reversible Biotin Binding Capability: Engineering a Mobile Loop as an Exit Door for Biotin

    Get PDF
    A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible

    Secreted production of an elastin-like polypeptide by Pichia pastoris

    Get PDF
    Elastin-like polypeptides (ELPs) are biocompatible designer polypeptides with inverse temperature transition behavior in solution. They have a wide variety of possible applications and a potential medical importance. Currently, production of ELPs is done at lab scale in Escherichia coli shake flask cultures. With a view to future large scale production, we demonstrate secreted production of ELPs in methanol-induced fed-batch cultures of Pichia pastoris and purification directly from the culture medium. The production of ELPs by P. pastoris proved to be pH dependent within the experimental pH range of pH 3 to 7, as an increasing yield was found in cultures grown at higher pH. Because ELP produced at pH 7 was partly degraded, a pH optimum for production of ELP was found at pH 6 with a yield of 255 mg of purified intact ELP per liter of cell-free medium

    Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin—an insight from molecular dynamics simulations with classical and ab initio force fields

    Get PDF
    In the field of enzymatic catalysis, creating activity from a non catalytic scaffold is a daunting task. Introduction of a catalytically active moiety within a protein scaffold offers an attractive means for the creation of artificial metalloenzymes. With this goal in mind, introduction of a biotinylated d6-piano-stool complex within streptavidin (SAV) affords enantioselective artificial transfer-hydrogenases for the reduction of prochiral ketones. Based on an X-ray crystal structure of a highly selective hybrid catalyst, displaying significant disorder around the biotinylated catalyst [η6-(p-cymene)Ru(Biot-p-L)Cl], we report on molecular dynamics simulations to shed light on the protein–cofactor interactions and contacts. The results of these simulations with classical force field indicate that the SAV-biotin and SAV-catalyst complexes are more stable than ligand-free SAV. The point mutations introduced did not affect significantly the overall behavior of SAV and, unexpectedly, the P64G substitution did not provide additional flexibility to the protein scaffold. The metal-cofactor proved to be conformationally flexible, and the S112K or P64G mutants proved to enhance this effect in the most pronounced way. The network of intermolecular hydrogen bonds is efficient at stabilizing the position of biotin, but much less at fixing the conformation of an extended biotinylated ligand. This leads to a relative conformational freedom of the metal-cofactor, and a poorly localized catalytic metal moiety. MD calculations with ab initio potential function suggest that the hydrogen bonds alone are not sufficient factors for full stabilization of the biotin. The hydrophobic biotin-binding pocket (and generally protein scaffold) maintains the hydrogen bonds between biotin and protein

    Two Engineered OBPs with opposite temperature-dependent affinities towards 1-aminoanthracene

    Get PDF
    Engineered odorant-binding proteins (OBPs) display tunable binding affinities triggered by temperature alterations. We designed and produced two engineered proteins based on OBP-I sequence: truncated OBP (tOBP) and OBP::GQ20::SP-DS3. The binding affinity of 1-aminoanthracene (1-AMA) to these proteins revealed that tOBP presents higher affinity at 25°C (kd=0.45M) than at 37°C (kd=1.72M). OBP::GQ20::SP-DS3 showed an opposite behavior, revealing higher affinity at 37°C (kd=0.58M) than at 25°C (kd=1.17M). We set-up a system containing both proteins to evaluate their temperature-dependent binding. Our data proved the 1-AMA differential and reversible affinity towards OBPs, triggered by temperature changes. The variations of the binding pocket size with temperature, confirmed by molecular modelling studies, were determinant for the differential binding of the engineered OBPs. Herein we described for the first time a competitive temperature-dependent mechanism for this class of proteins.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). A.R. and F.G. thank FCT for funding their scholarships with the references SFRH/BPD/98388/2013 and SFRH/BD/114684/2016, respectively. T.G.C. thanks senior position funded by the European Union through the European Regional Development Fund (ERDF) under the Competitiveness Operational Program (COP-A1-A1.1.4-E nr.30/01.09.2016). C.S. thanks to the BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Access to computing resources funded by the Project "Search-ON2: Revitalization of HPC infrastructure of UMinho" (NORTE-07-0162-FEDER-000086), co-funded by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF), is also gratefully acknowledged.info:eu-repo/semantics/publishedVersio
    corecore