5 research outputs found

    Comparison of the results of modified NDVI indicator established on the basis of measurements by hyperspectral spectrometer and digital camera

    Get PDF
    Due to the lack of readily available imaging remote sensing methods that would determine the vegetation state on a local scale, an attempt was made to calculate the modified NDVI index on the basis of digital camera photography. To verify the effectiveness of the method, the digital camera and hyperspectral spectrometer results were compared. For the analysis material leaves of six different tree species from an urban area were selected and picked in four different phases of the vegetative season. The results prove that there is no significant correlation between the two methods, but they also suggest that further research on the proposed method is necessary.

    Experimental study of smog microphysical and optical vertical structure in the Silesian Beskids, Poland

    Get PDF
    This study presents the vertical profiles of aerosol optical and microphysical properties obtained from cable car and ground-based measurements in the Silesian Beskids, Poland. The data were collected during a measurement campaign between 25 February and March 11, 2018. An AE-51 micro-aethalometer and PMS7003 and OPC-N2 optical particle counters were mounted on the cable car and used to measure the profiles of equivalent of black carbon (eBC) concentration and aerosol size distribution. In situ measurements of the optical properties of the aerosols were obtained using an AE-31 aethalometer and photoacoustic devices. A prototype lidar was used to determine the planetary boundary layer (PBL) height and the aerosol layers. In the middle phase of the study (1–6 March 2018), significant night-time temperature inversions were observed. During the inversion period, the parameters describing the amount of aerosols in the air increased significantly. The concentration of eBC exceeded the level of 15 μg/m3 several times, with an average level of 5.39 ± 4.42 μg/m3. Conversely, the results obtained in the first and third phases of the experiment were at the level of the aerosol background, being 1.45 ± 0.88 μg/m3 and 0.90 ± 0.95 μg/m3, respectively. Significant differences were also observed in the vertical profiles of PM10 mass and eBC concentration. In the middle phase of the study, the profiles showed a significant reduction in the concentration of pollutants with height, while in the first and third phases, there were slight variations with height

    Comparison of Columnar, Surface, and UAS Profiles of Absorbing Aerosol Optical Depth and Single-Scattering Albedo in South-East Poland

    No full text
    The impact of absorbing aerosols on climate is complex, with their potential positive or negative forcing, depending on many factors, including their height distribution and reflective properties of the underlying background. Measurement data is very limited, due to insufficient remote sensing methods dedicated to the retrieval of their vertical distribution. Columnar values of absorbing aerosol optical depth (AAOD) and single scattering albedo (SSA) are retrieved by the Aerosol Robotic Network (AERONET). However, the number of available results is low due to sky condition and aerosol optical depth (AOD) limitation. Presented research describes results of field campaigns in Strzyżów (South-East Poland, Eastern Europe) dedicated to the comparison of the absorption coefficient and SSA measurements performed with on-ground in-situ devices (aethalomter, nephelometer), small unmanned aerial system (UAS) carrying micro-aethalometer, as well as with lidar/ceilometer. An important aspect is the comparison of measurement results with those delivered by AERONET. Correlation of absorption to scattering coefficients measured on ground (0.79) and correlation of extinction on ground to AOD measured by AERONET (0.77) was visibly higher than correlation between AOD and AAOD retrieved by AERONET (0.56). Columnar SSA was weakly correlated with ground SSA (higher values of columnar SSA), which were mainly explained by hygroscopic effects, increasing scattering coefficient in ambient (wet conditions), and partly high uncertainty of SSA retrieval. AAOD derived with the use of profiles from UAS up to PBL height, was estimated to contribute in average to 37% of the total AAOD. A method of AAOD estimation, in the whole troposphere, with use of measured vertical profiles of absorption coefficient and extinction coefficient profiles from lidars was proposed. AAOD measured with this method has poor correlation with AERONET data, however for some measurements, within PBL, AAOD was higher than reported by AERONET, suggesting potential underestimation in photometric measurement under particular conditions. Correlation of absorption coefficient in profile to on ground measurements decrease with altitude. Measurements of SSA from drones agree well with ground measurements and are lower than results from AERONET, which suggests a larger contribution of absorbing aerosols. As an alternative for AAOD estimation in case of lack of AERONET AAOD data simple models are proposed, which base on AOD scaling with SSA measured with different methods. Proposed solution increase potential of absorption coefficient measurements in vertical profiles and columns of the atmosphere. Presented solutions make measurements of absorption coefficients in vertical profiles more affordable and allow rough estimation of columnar values for the whole atmosphere

    Error simulations of uncorrected NDVI and DCVI during remote sensing measurements from UAS

    No full text
    Remote sensing from unmanned aerial systems (UAS) has been gaining popularity in the last few years. In the field of vegetation mapping, digital cameras converted to calculate vegetation index (DCVI) are one of the most popular sensors. This paper presents simulations using a radiative transfer model (libRadtran) of DCVI and NDVI results in an environment of possible UAS flight scenarios. The analysis of the results is focused on the comparison of atmosphere influence on both indices. The results revealed uncertainties in uncorrected DCVI measurements up to 25% at the altitude of 5 km, 5% at 1 km and around 1% at 0.15 km, which suggests that DCVI can be widely used on small UAS operating below 0.2 km

    Error simulations of uncorrected NDVI and DCVI during remote sensing measurements from UAS

    No full text
    Remote sensing from unmanned aerial systems (UAS) has been gaining popularity in the last few years. In the field of vegetation mapping, digital cameras converted to calculate vegetation index (DCVI) are one of the most popular sensors. This paper presents simulations using a radiative transfer model (libRadtran) of DCVI and NDVI results in an environment of possible UAS flight scenarios. The analysis of the results is focused on the comparison of atmosphere influence on both indices. The results revealed uncertainties in uncorrected DCVI measurements up to 25% at the altitude of 5 km, 5% at 1 km and around 1% at 0.15 km, which suggests that DCVI can be widely used on small UAS operating below 0.2 km
    corecore