2,488 research outputs found

    Influence of suction on shock wave-turbulent boundary layer interactions for two- dimensional and axially symmetric flows, 16 September 1967 - 30 June 1969

    Get PDF
    Influence of suction on shock wave turbulent boundary layer interactions for two dimensional and axially symmetric flow

    Wave Profile for Anti-force Waves with Maximum Possible Currents

    Get PDF
    In the theoretical investigation of the electrical breakdown of a gas, we apply a one-dimensional, steady state, constant velocity, three component fluid model and consider the electrons to be the main element in propagation of the wave. The electron gas temperature, and therefore the electron gas partial pressure, is considered to be large enough to provide the driving force. The wave is considered to have a shock front, followed by a thin dynamical transition region. Our set of electron fluid-dynamical equations consists of the equations of conservation of mass, momentum, and energy, plus the Poisson\u27s equation. The set of equations is referred to as the electron fluid dynamical equations; and a successful solution therefor must meet a set of acceptable physical conditions at the trailing edge of the wave. For breakdown waves with a significant current behind the shock front, modifications must be made to the set of electron fluid dynamical equations, as well as the shock condition on electron temperature. Considering existence of current behind the shock front, we have derived the shock condition on electron temperature, and for a set of experimentally measured wave speeds, we have been able to find maximum current values for which solutions to our set of electron velocity, electron temperature, and electron number density within the dynamical transition region of the wave

    Connecting the discrete and continuous-time quantum walks

    Full text link
    Recently, quantized versions of random walks have been explored as effective elements for quantum algorithms. In the simplest case of one dimension, the theory has remained divided into the discrete-time quantum walk and the continuous-time quantum walk. Though the properties of these two walks have shown similarities, it has remained an open problem to find the exact relation between the two. The precise connection of these two processes, both quantally and classically, is presented. Extension to higher dimensions is also discussed.Comment: 5 pages, 1 figur

    Quantum rejection sampling

    Full text link
    Rejection sampling is a well-known method to sample from a target distribution, given the ability to sample from a given distribution. The method has been first formalized by von Neumann (1951) and has many applications in classical computing. We define a quantum analogue of rejection sampling: given a black box producing a coherent superposition of (possibly unknown) quantum states with some amplitudes, the problem is to prepare a coherent superposition of the same states, albeit with different target amplitudes. The main result of this paper is a tight characterization of the query complexity of this quantum state generation problem. We exhibit an algorithm, which we call quantum rejection sampling, and analyze its cost using semidefinite programming. Our proof of a matching lower bound is based on the automorphism principle which allows to symmetrize any algorithm over the automorphism group of the problem. Our main technical innovation is an extension of the automorphism principle to continuous groups that arise for quantum state generation problems where the oracle encodes unknown quantum states, instead of just classical data. Furthermore, we illustrate how quantum rejection sampling may be used as a primitive in designing quantum algorithms, by providing three different applications. We first show that it was implicitly used in the quantum algorithm for linear systems of equations by Harrow, Hassidim and Lloyd. Secondly, we show that it can be used to speed up the main step in the quantum Metropolis sampling algorithm by Temme et al.. Finally, we derive a new quantum algorithm for the hidden shift problem of an arbitrary Boolean function and relate its query complexity to "water-filling" of the Fourier spectrum.Comment: 19 pages, 5 figures, minor changes and a more compact style (to appear in proceedings of ITCS 2012

    Scaling of running time of quantum adiabatic algorithm for propositional satisfiability

    Full text link
    We numerically study quantum adiabatic algorithm for the propositional satisfiability. A new class of previously unknown hard instances is identified among random problems. We numerically find that the running time for such instances grows exponentially with their size. Worst case complexity of quantum adiabatic algorithm therefore seems to be exponential.Comment: 7 page

    Quantum Walks on Trees with Disorder: Decay, Diffusion, and Localization

    Full text link
    Quantum walks have been shown to have impressive transport properties compared to classical random walks. However, imperfections in the quantum walk algorithm can destroy any quantum mechanical speed-up due to Anderson localization. We numerically study the effect of static disorder on a quantum walk on the glued trees graph. For small disorder, we find that the dominant effect is a type of quantum decay, and not quantum localization. For intermediate disorder, there is a crossover to diffusive transport, while a localization transition is observed at large disorder, in agreement with Anderson localization on the Cayley tree.Comment: 12 pages, 13 figure

    Discrimination of unitary transformations in the Deutsch-Jozsa algorithm

    Full text link
    We describe a general framework for regarding oracle-assisted quantum algorithms as tools for discriminating between unitary transformations. We apply this to the Deutsch-Jozsa problem and derive all possible quantum algorithms which solve the problem with certainty using oracle unitaries in a particular form. We also use this to show that any quantum algorithm that solves the Deutsch-Jozsa problem starting with a quantum system in a particular class of initial, thermal equilibrium-based states of the type encountered in solution state NMR can only succeed with greater probability than a classical algorithm when the problem size exceeds n105.n \sim 10^5.Comment: 7 pages, 1 figur

    Decontaminating experiences with circular offerings

    Get PDF
    Keeping a product offering in the system through continued use and between multiple users creates the potential for interactions which become contaminated. These contaminated interactions can cause a barrier to material circulation and extended product lifetimes. This study seeks to identify the underlying design strategies useful in addressing contaminated interaction. Strategies were identified through an exploration of possible solutions to negative ontamination in two phases. Phase I involved identifying 70 existing solutions to instances of negative contaminated interaction and abstracting these to identify a more fundamental underlying principle. In Phase II, designers participated in a brainstorming session to identify as many solutions as possible to several contaminated interaction design briefs. The resulting 155 solutions were analysed together with the other data to generate a final set of strategies. In the end, eight strategies distilled from the analysis which are used to address contaminated interaction. The strategies represent preventative and responsive solutions applicable to various elements of the contamination process.Marketing and Consumer Researc

    Promoting Success for First-Generation Students of Color: The Importance of Academic, Transitional Adjustment, and Mental Health Supports

    Get PDF
    Nearly 1 in 3 college students (30%) are first-generation students of color (FGSOC), possessing the intersectional identity of being both a first-generation college student and a racial minority. FGSOC face increased psychological and social difficulties in college when compared to students in other groups, resulting from cultural differences, lack of academic preparedness, stigma surrounding socioeconomic status, racial discrimination, and marginalization. This article summarizes peer-reviewed literature related to three types of supports that can improve the college experience and promote the academic success of FGSOC: academic supports, transitional adjustment supports, and mental health supports. The reviewed literature is framed by a social justice perspective. Implications for future research, policy, and practice by educators, administrators, and staff working with this population of students are discussed

    Implementing the one-dimensional quantum (Hadamard) walk using a Bose-Einstein Condensate

    Full text link
    We propose a scheme to implement the simplest and best-studied version of quantum random walk, the discrete Hadamard walk, in one dimension using coherent macroscopic sample of ultracold atoms, Bose-Einstein condensate (BEC). Implementation of quantum walk using BEC gives access to the familiar quantum phenomena on a macroscopic scale. This paper uses rf pulse to implement Hadamard operation (rotation) and stimulated Raman transition technique as unitary shift operator. The scheme suggests implementation of Hadamard operation and unitary shift operator while the BEC is trapped in long Rayleigh range optical dipole trap. The Hadamard rotation and a unitary shift operator on BEC prepared in one of the internal state followed by a bit flip operation, implements one step of the Hadamard walk. To realize a sizable number of steps, the process is iterated without resorting to intermediate measurement. With current dipole trap technology it should be possible to implement enough steps to experimentally highlight the discrete quantum random walk using a BEC leading to further exploration of quantum random walks and its applications.Comment: 7 pages, 3 figure
    corecore