3,524 research outputs found

    Electric propulsion engine test chamber Patent

    Get PDF
    Electric propulsion engine test chambe

    The Viscosity and Thermal Conductivity Coefficients of Dilute Neon, Krypton, and Xenon

    Get PDF
    Viscosity and thermoconductivity coefficients of dilute neon, krypton, and xeno

    Wave Profile for Current Bearing Antiforce Waves

    Get PDF
    For fluid dynamical analysis of breakdown waves, we employ a one-dimensional, three-component (electrons, ions and neutral particles) fluid model to describe a steady-state, ionizing wave propagating counter to strong electric fields. The electron gas temperature and therefore the electron fluid pressure is assumed to be large enough to sustain the wave motion down the discharge tube. Such waves are referred to as antiforce waves. The complete set of equations describing such waves consists of the equations of conservation of mass, momentum and energy coupled with Poisson’s equation. Inclusion of current behind the wave front alters the set of electron fluid dynamical equations and also the boundary condition on electron temperature. For a range of experimentally observed current values, using the modified boundary condition on electron temperature, we have been able to integrate our modified set of electron fluid dynamical equations through the Debye layer. Our solutions meet the expected boundary conditions at the trailing edge of the wave. We present the wave profile for electric field, electron velocity, electron number density and electron temperature within the Debye layer of the wave

    Universal quantum computation by discontinuous quantum walk

    Full text link
    Quantum walks are the quantum-mechanical analog of random walks, in which a quantum `walker' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This `discontinuous' quantum walk employs perfect quantum state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one timestep apart.Comment: 7 pages, revte

    Combined operations and the European theatre during the Nine Years' War, 1688-97

    Get PDF
    This is the author's PDF version of an article published in Historical research© 2005. The definitive version is available at www.blackwell-synergy.com.This article discusses the strategic and operational purpose of England's combined army-navy operations within the European theatre during the Nine Years' War, 1688-97. Specifically, the historical consensus that these operations were simply a compromise product of the contemporary political discourse, and consistently suffered from poor preparation and implementation, is reassessed. In so doing, the article considers the combined service descents planned and executed against the northern French coastline between 1691 and 1694, including in particular the renowned operation at Brest in June 1694, and also those operations undertaken by Admiral Russell's Mediterranean fleet in 1695.This article was submitted to the RAE2008 for the University of Chester - History

    Noise resistance of adiabatic quantum computation using random matrix theory

    Full text link
    Besides the traditional circuit-based model of quantum computation, several quantum algorithms based on a continuous-time Hamiltonian evolution have recently been introduced, including for instance continuous-time quantum walk algorithms as well as adiabatic quantum algorithms. Unfortunately, very little is known today on the behavior of these Hamiltonian algorithms in the presence of noise. Here, we perform a fully analytical study of the resistance to noise of these algorithms using perturbation theory combined with a theoretical noise model based on random matrices drawn from the Gaussian Orthogonal Ensemble, whose elements vary in time and form a stationary random process.Comment: 9 pages, 3 figure

    Dynamic settling of particles in shear flows of shear-thinning fluids

    Get PDF
    Dynamic settling is the phenomenon whereby a relatively dense particle settles through a sheared flow of a non-Newtonian fluid at a speed that depends on the shear rate of the background flow. This means that due to the non-linear rheology, the settling velocity may vary spatially and temporally as the background shear rate of the suspending fluid varies, an effect which does not occur in Newtonian fluids. In this contribution, the consequences of this dependency are explored for a dilute suspension of particles released uniformly from a source in a sustained and externally-driven flow of shear-thinning fluid. It is shown theoretically that the concentration field does not remain uniform, but evolves downstream, allowing calculation of the runout length, settling times and distribution of the deposited particles. Flows with a velocity maximum are demonstrated to affect the concentration field very strongly as they develop a ‘kinematic barrier’ over which settling times are considerably lengthened. Flows with bidisperse suspensions are shown to produce deposits that vary non-monotonically in thickness and composition with distance downstream, an effect which is solely due to dynamic settling. Finally flows of viscoplastic fluids which exhibit yielded and unyielded regions may accentuate the role and effects of the kinematic barrier to settling

    Exploring the Cosmic Evolution of Habitability with Galaxy Merger Trees

    Get PDF
    We combine inferred galaxy properties from a semi-analytic galaxy evolution model incorporating dark matter halo merger trees with new estimates of supernova and gamma ray burst rates as a function of metallicity from stellar population synthesis models incorporating binary interactions. We use these to explore the stellar mass fraction of galaxies irradiated by energetic astrophysical transients and its evolution over cosmic time, and thus the fraction which is potentially habitable by life like our own. We find that 18 per cent of the stellar mass in the Universe is likely to have been irradiated within the last 260 Myr, with GRBs dominating that fraction. We do not see a strong dependence of irradiated stellar mass fraction on stellar mass or richness of the galaxy environment. We consider a representative merger tree as a Local Group analogue, and find that there are galaxies at all masses which have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but also that there are galaxies at all masses where the merger history and associated star formation have rendered galaxies effectively uninhabitable. This illustrates the need to consider detailed merger trees when evaluating the cosmic evolution of habitability.Comment: 11 page, 10 figures. MNRAS accepted 13th Dec 2017. Updated to match accepted version, with additional discussion of metallicity effect
    • …
    corecore