2,033 research outputs found
Continuous breakdown of Purcell's scallop theorem with inertia
Purcell's scallop theorem defines the type of motions of a solid body -
reciprocal motions - which cannot propel the body in a viscous fluid with zero
Reynolds number. For example, the flapping of a wing is reciprocal and, as was
recently shown, can lead to directed motion only if its frequency Reynolds
number, Re_f, is above a critical value of order one. Using elementary
examples, we show the existence of oscillatory reciprocal motions which are
effective for all arbitrarily small values of the frequency Reynolds number and
induce net velocities scaling as (Re_f)^\alpha (alpha > 0). This demonstrates a
continuous breakdown of the scallop theorem with inertia.Comment: 6 pages, 1 figur
Anomalous exponents at the onset of an instability
Critical exponents are calculated exactly at the onset of an instability,
using asymptotic expansiontechniques. When the unstable mode is subject to
multiplicative noise whose spectrum at zero frequency vanishes, we show that
the critical behavior can be anomalous, i.e. the mode amplitude X scales with
departure from onset \mu as with an exponent
different from its deterministic value. This behavior is observed in a direct
numerical simulation of the dynamo instability and our results provide a
possible explanation to recent experimental observations
Suppression of spin-torque in current perpendicular to the plane spin-valves by addition of Dy cap layers
We demonstrate that the addition of Dy capping layers in current
perpendicular to the plane giant magneto-resistive spin-valves can increase the
critical current density beyond which spin-torque induced instabilities are
observed by about a factor of three. Current densities as high as 5e7 A/cm2 are
measured provided that the electron current flows from the free to the
reference layer. While Dy capped samples exhibit nonmagnetic 1/f noise, it is
sufficiently small to be unimportant for read head operation at practical data
rates.Comment: 13 pages (manuscript form), with 5 figures. Submitted for publicatio
Fault-tolerant Quantum Communication with Minimal Physical Requirements
We describe a novel protocol for a quantum repeater which enables long
distance quantum communication through realistic, lossy photonic channels.
Contrary to previous proposals, our protocol incorporates active purification
of arbitrary errors at each step of the protocol using only two qubits at each
repeater station. Because of these minimal physical requirements, the present
protocol can be realized in simple physical systems such as solid-state single
photon emitters. As an example, we show how nitrogen vacancy color centers in
diamond can be used to implement the protocol, using the nuclear and electronic
spin to form the two qubits.Comment: 4 pages, 3 figures. V2: Minor modifications. V3: Major changes in the
presentation and new titl
Oscillatory Flows Induced by Microorganisms Swimming in Two-dimensions
We present the first time-resolved measurements of the oscillatory velocity
field induced by swimming unicellular microorganisms. Confinement of the green
alga C. reinhardtii in stabilized thin liquid films allows simultaneous
tracking of cells and tracer particles. The measured velocity field reveals
complex time-dependent flow structures, and scales inversely with distance. The
instantaneous mechanical power generated by the cells is measured from the
velocity fields and peaks at 15 fW. The dissipation per cycle is more than four
times what steady swimming would require.Comment: 4 pages, 4 figure
Time-resolved investigation of magnetization dynamics of arrays of non-ellipsoidal nanomagnets with a non-uniform ground state
We have performed time-resolved scanning Kerr microscopy (TRSKM) measurements
upon arrays of square ferromagnetic nano-elements of different size and for a
range of bias fields. The experimental results were compared to micromagnetic
simulations of model arrays in order to understand the non-uniform precessional
dynamics within the elements. In the experimental spectra two branches of
excited modes were observed to co-exist above a particular bias field. Below
the so-called crossover field, the higher frequency branch was observed to
vanish. Micromagnetic simulations and Fourier imaging revealed that modes from
the higher frequency branch had large amplitude at the center of the element
where the effective field was parallel to the bias field and the static
magnetization. Modes from the lower frequency branch had large amplitude near
the edges of the element perpendicular to the bias field. The simulations
revealed significant canting of the static magnetization and the effective
field away from the direction of the bias field in the edge regions. For the
smallest element sizes and/or at low bias field values the effective field was
found to become anti-parallel to the static magnetization. The simulations
revealed that the majority of the modes were de-localized with finite amplitude
throughout the element, while the spatial character of a mode was found to be
correlated with the spatial variation of the total effective field and the
static magnetization state. The simulations also revealed that the frequencies
of the edge modes are strongly affected by the spatial distribution of the
static magnetization state both within an element and within its nearest
neighbors
Revisiting the ABC flow dynamo
The ABC flow is a prototype for fast dynamo action, essential to the origin
of magnetic field in large astrophysical objects. Probably the most studied
configuration is the classical 1:1:1 flow. We investigate its dynamo properties
varying the magnetic Reynolds number Rm. We identify two kinks in the growth
rate, which correspond respectively to an eigenvalue crossing and to an
eigenvalue coalescence. The dominant eigenvalue becomes purely real for a
finite value of the control parameter. Finally we show that even for Rm =
25000, the dominant eigenvalue has not yet reached an asymptotic behaviour. Its
still varies very significantly with the controlling parameter. Even at these
very large values of Rm the fast dynamo property of this flow cannot yet be
established
Hydrodynamic orienting of asymmetric microobjects under gravity
It is shown that nonsymmetric microobjects orient while settling under
gravity in a viscous fluid. To analyze this process, a simple shape is chosen:
a non-deformable `chain'. The chain consists of two straight arms, made of
touching solid spheres. In the absence of external torques, the spheres are
free to spin along the arms. The motion of the chain is evaluated by solving
the Stokes equations with the use of the multipole method. It is demonstrated
that the spinning beads speed up sedimentation by a small amount, and increase
the orientation rate significantly in comparison to the corresponding rigid
chain. It is shown that chains orient towards the V-shaped stable stationary
configuration. In contrast, rods and star-shaped microobjects do not rotate.
The hydrodynamic orienting is relevant for efficient swimming of non-symmetric
microobjects, and for sedimenting suspensions.Comment: 9 page
Microscale swimming: The molecular dynamics approach
The self-propelled motion of microscopic bodies immersed in a fluid medium is
studied using molecular dynamics simulation. The advantage of the atomistic
approach is that the detailed level of description allows complete freedom in
specifying the swimmer design and its coupling with the surrounding fluid. A
series of two-dimensional swimming bodies employing a variety of propulsion
mechanisms -- motivated by biological and microrobotic designs -- is
investigated, including the use of moving limbs, changing body shapes and fluid
jets. The swimming efficiency and the nature of the induced, time-dependent
flow fields are found to differ widely among body designs and propulsion
mechanisms.Comment: 5 pages, 3 figures (minor changes to text
- …