29 research outputs found

    Crosstalk between Mitochondrial and Sarcoplasmic Reticulum Ca2+ Cycling Modulates Cardiac Pacemaker Cell Automaticity

    Get PDF
    Mitochondria dynamically buffer cytosolic Ca(2+) in cardiac ventricular cells and this affects the Ca(2+) load of the sarcoplasmic reticulum (SR). In sinoatrial-node cells (SANC) the SR generates periodic local, subsarcolemmal Ca(2+) releases (LCRs) that depend upon the SR load and are involved in SANC automaticity: LCRs activate an inward Na(+)-Ca(2+) exchange current to accelerate the diastolic depolarization, prompting the ensemble of surface membrane ion channels to generate the next action potential (AP).To determine if mitochondrial Ca(2+) (Ca(2+) (m)), cytosolic Ca(2+) (Ca(2+) (c))-SR-Ca(2+) crosstalk occurs in single rabbit SANC, and how this may relate to SANC normal automaticity.Inhibition of mitochondrial Ca(2+) influx into (Ru360) or Ca(2+) efflux from (CGP-37157) decreased [Ca(2+)](m) to 80 ± 8% control or increased [Ca(2+)](m) to 119 ± 7% control, respectively. Concurrent with inhibition of mitochondrial Ca(2+) influx or efflux, the SR Ca(2+) load, and LCR size, duration, amplitude and period (imaged via confocal linescan) significantly increased or decreased, respectively. Changes in total ensemble LCR Ca(2+) signal were highly correlated with the change in the SR Ca(2+) load (r(2) = 0.97). Changes in the spontaneous AP cycle length (Ru360, 111 ± 1% control; CGP-37157, 89 ± 2% control) in response to changes in [Ca(2+)](m) were predicted by concurrent changes in LCR period (r(2) = 0.84).A change in SANC Ca(2+) (m) flux translates into a change in the AP firing rate by effecting changes in Ca(2+) (c) and SR Ca(2+) loading, which affects the characteristics of spontaneous SR Ca(2+) release

    Ca<sup>2+</sup> dynamics in the mitochondria - state of the art

    No full text
    The importance of [Ca(2+)] in the mitochondrial matrix, [Ca(2+)](mito), had been proposed by early work of Carafoli and others [1], [2] and [3]. The key suggestion in the 1970s [4] was that regulatory [Ca(2+)](mito) played a role in controlling the rate of activation of tricarboxylic acid cycle dehydrogenases, important in the regulation of ATP production by the electron transport chain (ETC) during oxidative phosphorylation. This view is now established [5] and [6] and the key questions currently debated are to what extent do the mitochondria acquire and release Ca(2+), and what impact do mitochondria have on the dynamic Ca(2+) signal in the cardiac ventricular myocyte [7]. Although investigations of Ca(2+) dynamics in mitochondria have been problematic, disparate and inconclusive, they have also been both provocative and exciting. A recent special issue of this journal presented contrasting perspectives on the speed, extent and mechanisms of changes in [Ca(2+)](mito), and how these changes may influence cellular spatio-temporal [Ca(2+)](i) dynamics [8]. An audio discussion is also available online [9]. The uncertain nature of the signaling pathways is noted in Table 1 (see below) which shows mitochondrial proteins and processes that are of current focus and which remain contentious. Each of the “items” listed is largely unsettled, or is a “work in progress”. There may be advocates for opposing positions noted or recent discoveries that must still be tested at multiple levels by diverse laboratories. Currently, the first item, the mitochondrial sodium/calcium exchanger (NCLX) [10], appears the most solid with respect to the molecular identification and physiological function, whereas, the recently described candidates of the mitochondrial Ca(2+) uniporter (MCU) [11] and [12] still need to be verified and broadly examined by the scientific community

    Mitochondrial Calcium Uptake: Context Matters

    Get PDF
    corecore