55 research outputs found
Psychological stress in aged female mice causes acute hypophagia independent of central serotonin 2C receptor activation
Sex differences exist in the activation of the hypothalamic-pituitary-adrenal axis following exposure to stress, and the stress response is further affected by aging. This study was conducted to elucidate the mechanism of hypophagia in aged female mice exposed to stress. Immediately after a stress load, aged female mice exhibited acute hypophagia and a rise in plasma corticosterone levels. The administration of a serotonin 2C receptor (5-T2CR) antagonist suppressed plasma corticosterone but did not affect the reduction in food intake. In contrast, an endogenous ghrelin enhancer, rikkunshito (RKT), significantly inhibited the reduction in food intake. An increase in peripheral acylated ghrelin levels during fasting, which occurs in young mice, was not observed in aged female mice. Moreover, in these mice, significantly increased levels of ghrelin and gastric preproghrelin mRNA expression were observed in the fed status. Moreover, plasma ghrelin levels were elevated by RKT and not by the 5-HT2CR antagonist. In female mice, the hypothalamic non-edited (INI) and partially edited mRNA 5-HT2CR isoforms (VNV, VNI, VSV or VSI) decreased with age, while in male mice, the editing isoform was unchanged by aging or stress. Estrogen receptor alpha (ER alpha)-positive cell counts in the arcuate nucleus of young male mice exposed to stress and control aged male mice were increased compared with those in young control mice. In aged male mice exposed to stress, the number of ER alpha-expressing cells in the paraventricular nucleus were significantly increased compared with those in aged control mice; in female mice, there was no increase in the number of ER alpha-positive cells. Hypophagia in aged female mice exposed to stress may be independent of 5-HT2CR activation. It seems likely that the mechanisms may be caused by sex dependent, differential regulation in 5-HT2CR mRNA expression, peripheral acylated ghrelin secretion and/or hypothalamic ER alpha expression
CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia
Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities
TJN-259 Improves Mesangial Lesions in Experimental Immunoglobulin A Nephropathy in ddY Mice
TJN-259 is a chemical substance based on the structural features of the botanically derived ingredient acteoside. This study was performed in order to elucidate the antinephritic effects of TJN-259 in experimental immunoglobulin A (IgA) nephropathy. In this study, 28-week-old ddY mice were used as a spontaneous model of IgA nephropathy. With regard to spontaneous IgA nephropathy, we investigated the effects of TJN-259 administered from 28 to 40 weeks. In addition, an accelerated model of IgA nephropathy was experimentally induced in ddY mice by oral administration of bovine serum albumin, followed by reticuloendothelial blocking by colloidal carbon injection and heminephrectomy. At 10 weeks after the 3rd carbon injection, we also examined the effects of TJN-259 on accelerated IgA nephropathy. To investigate the effects of TJN-259 on transforming growth factor (TGF)-β1 production in accelerated IgA nephropathy, kidneys were isolated and measured TGF-β1 by the enzyme-linked immunosorbent assay (ELISA) method. The administration of TJN-259 to mice with spontaneous IgA nephropathy decreased the incidence of mesangial expansion as well as the number of nuclei per glomerular cross-section in comparison with that of non-treated mice. In addition, TJN-259 treatment prevented the increase in the incidence of mesangial expansion, crescent formation, and segmental sclerosis in glomeruli in accelerated IgA nephropathy. TJN-259 also inhibited the increased immunostaining score of collagen type IV and TGF-β1 in glomeruli of accelerated IgA nephropathy. Treatment with TJN-259 inhibited the increases in renal total and mature TGF-β1 protein levels in accelerated type IgA nephropathy. TJN-259 failed to inhibit the increase in serum IgA levels in both models. These results suggest that TJN-259 was an effective treatment against IgA nephropathy in ddY mice, acting via the suppression of TGF-β1 production in glomeruli
TJN-419 Improves Dextran Sulfate Sodium-Induced Colitis via Inhibition of Interleukin-12 Release
We investigated the association of interleukin-12 (IL-12) with development of dextran sulfate sodium (DSS)-induced colitis in mice, and examined the effects of TJN-419, a synthetic compound derived from acteoside, on this process. Enhanced IL-12 production in lipopolysaccharide (LPS)-stimulated macrophages was dose-dependently inhibited by addition of TJN-419 to culture medium, and this effect was abolished by pretreatment with PD98059, an inhibitor of extracellular-regulated kinase. We then assessed the effect of TJN-419 or a neutralizing antibody against murine IL-12 in a DSS-induced colitis model in C57 BL/6 mice. Colitis was induced by 5% DSS solution given as drinking water. Treatment with the anti-IL-12 antibody was performed intravenously and TJN-419 was administered orally. We also investigated the effect of TJN-419 on erosion in the rectum in a DSS-induced colitis model in rat. The IL-12 level in the rectum was significantly enhanced and the IL-10 level was significantly decreased in animals with DSS-induced colitis compared with untreated controls. Intravenous injection of the anti-IL-12 antibody and oral administration of TJN-419 inhibited clinical symptoms in DSS-induced colitis. TJN-419 also inhibited the increase in IL-12 and suppressed the area of erosion in the rectum in DSS-induced colitis in rats. These results indicate that IL-12 has a possible role in development of DSS-induced colitis and that TJN-419 is effective for treatment of this disease model via inhibition of IL-12 production
Decreased Motility of the Lower Esophageal Sphincter in a Rat Model of Gastroesophageal Reflux Disease May Be Mediated by Reductions of Serotonin and Acetylcholine Signaling
To elucidate the altered function of the lower esophageal sphincter (LES) in gastroesophageal reflux disease (GERD), we evaluated the motility proximal to LES using force transducers, contraction and relaxation responses to neurotransmitters in LES strips, and gene expression of neurotransmitter receptors in GERD rats. Force transducers were applied to the proximal LES, and contraction of the LES was monitored during free moving. In addition, LES was isolated from sham-operated and GERD rats to investigate the LES function in an organ bath, and to determine gene expression. The in vivo motility proximal to LES (% motility index) in conscious rats was decreased by atropine treatment and increased by cisapride (5-HT4 receptor agonist) treatment. Acetylcholine- and serotonin (5-HT)-induced LES contraction and sodium nitroprusside-induced relaxation in LES strips of GERD rats markedly decreased compared to sham-operated rats. The mRNA expressions of 5-HT4 and muscarinic acetylcholine 3 receptors were significantly reduced in esophageal LES strips of GERD rats compared with sham-operated rats. Intraperitoneal administration of cisapride improves the erosive damage in the esophagus in GERD rats. It is suggested that the reduction of 5-HT-induced contraction in LES strips in GERD rats may be partly due to the decrease in 5-HT4-receptor activation. The reduction of LES function may be due to the decrease in neurotransmitters signal transduction, leading to the deterioration of histopathological damage in GERD
- …