611 research outputs found

    Revising inelastic dark matter direct detection by including the cosmic ray acceleration

    Full text link
    The null signal from collider and dark matter (DM) direct detector experiments makes the interaction between DM and visible matter too small to reproduce the correct relic density for many thermal DM models. The remaining parameter space indicates that two almost degenerated states in the dark sector, the inelastic DM scenario, can co-annihilate in the early universe to produce the correct relic density. Regarding the direct detection of the inelastic DM scenario, the virialized DM component from the nearby halo is nonrelativistic and not able to excite the DM ground state, even if the relevant couplings can be considerable. Thus, a DM with a large mass splitting can evade traditional virialized DM direct detection. In this study, we connect the concept of cosmic-ray accelerated DM in our Milky Way and the direct detection of inelastic scattering in underground detectors to explore spectra that result from several interaction types of the inelastic DM. We find that the mass splitting δ<O(1 MeV)\delta<\mathcal{O}(1~{\rm MeV}) can still be reachable for cosmic ray accelerated DM with mass range 1 MeV<mχ1<100 GeV1~{\rm MeV}<m_{\chi_1}<100~{\rm GeV} and sub-GeV light mediator using the latest PandaX-4T data, even though we conservatively use the astrophysical parameter (effective length) Deff=1D_{\rm eff}=1 kpc.Comment: 38 pages, 12 figures, JHEP accepted versio

    The Influence of Ingestion Glucose Beverage before Graded Exercise to Exhaustion on Saliva IgA Concentration in Hypoxia and Normoxia Environment

    Get PDF
    In addition to exercise, hypoxia environment might induce higher immune stress. The present study was to investigate the ingestion of glucose before graded exercise to exhaustion in hypoxia environment on immune responses. Eight healthy college students

    Epitaxial Growth of Two-dimensional Insulator Monolayer Honeycomb BeO

    Full text link
    The emergence of two-dimensional (2D) materials launched a fascinating frontier of flatland electronics. Most crystalline atomic layer materials are based on layered van der Waals materials with weak interlayer bonding, which naturally leads to thermodynamically stable monolayers. We report the synthesis of a 2D insulator comprised of a single atomic sheet of honeycomb structure BeO (h-BeO), although its bulk counterpart has a wurtzite structure. The h-BeO is grown by molecular beam epitaxy (MBE) on Ag(111) thin films that are conveniently grown on Si(111) wafers. Using scanning tunneling microscopy and spectroscopy (STM/S), the honeycomb BeO lattice constant is determined to be 2.65 angstrom with an insulating band gap of 6 eV. Our low energy electron diffraction (LEED) measurements indicate that the h-BeO forms a continuous layer with good crystallinity at the millimeter scale. Moir\'e pattern analysis shows the BeO honeycomb structure maintains long range phase coherence in atomic registry even across Ag steps. We find that the interaction between the h-BeO layer and the Ag(111) substrate is weak by using STS and complimentary density functional theory calculations. We not only demonstrate the feasibility of growing h-BeO monolayers by MBE, but also illustrate that the large-scale growth, weak substrate interactions, and long-range crystallinity make h-BeO an attractive candidate for future technological applications. More significantly, the ability to create a stable single crystalline atomic sheet without a bulk layered counterpart is an intriguing approach to tailoring novel 2D electronic materials.Comment: 25 pages, 7 figures, submitted to ACS Nano, equal contribution by Hui Zhang and Madisen Holbroo
    corecore