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ABSTRACT
 

This thesis examines the hardware implementation and simulation of complex
 

analog Hopfield Neural Networks(HNN): In the evolution ofNeural Networks,one
 

rather unexplored area has been the use ofcomplex domain computation. Although
 

complex neural networks have been proposed by previous research (Birx and
 

Pipenberg, 1989; Culhane and Pecker, 1989; Szilagyi et al, 1990; Georgiou, 1992;
 

Yang et al., 1994),none has thus far implemented complex domain HNNsas a circuit.
 

First, the complex weights were designed aa circuit cpmponents using SPICE
 

which is a popular circuit design simulator. In order to test the correctness ofthe
 

complex weight circiiit components, the piscrete Fourier Transfprrti (DFT) was
 

implemented as a circuit using the same type ofcomponents. The DFT circuit output
 

was compared with the DFT calculated output, and it was found that two values
 

agreed. This wasa validation ofthe circuit design ofthe complex weights.
 

Second, in the design a suitable activation function was used. The activation
 

function wassuggested by Georgiou(1992)asa suitable onefor the complex Hopfield
 

Neural Net. This is a normalizing function, as it normalizes a given complex value to
 

have unity magnitude, while the phase remains unchanged. Thus, it limits the output
 

ofa neuron to having phase information only.
 

In attempting to simulate the complex HNN,it was discovered that the circuit
 

simulator SPICE had a limitation which did not allow proper simulation ofthe complex
 

HNN. This was overcome by decomposing the complex HNN into a real coupled
 

network. The real coupled network was designed and wasshown to be equivalent to
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the complex HNN. The weights ofthe real coupled network are purely resistive, as
 

opposed to inductive ones in the complexUNN. The equivalent real network was
 

tested using SPICE,and the results were verified by using a G program that simulated
 

thesame network.:, V. \
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chapterone
 

Hopfield NeuralNetworks
 

,,1.1 ;Introductioo-:'":''\''
 

In the pastfew years,in order to Solve diflBcult problems such as pattern recognition,
 

researchers developed artificial neural networks that consist of massively interconnected
 

neurons. John Hopfield(1982,1984)introduced a recurrent neural network architecture
 

for associative memories. He used it to demonstrate the computational properties of a
 

fijlly connected network of units. The Hopfield Neural Network is an example of an
 

associative learning network model. Such models store pattern vectors as memories,
 

which can later be retrieved by providing corrupted versions ofthe Stored pattern vectors.
 

Associative memory associates or regenerates stored pattern yectprs by means ofspecific
 

similarity criteria. The purpose ofthe search is to output either one or all stored items
 

that match the given search argument. The dynamics ofneurons in Hopfield Nets can be
 

described in both discrete and continuous space. These are discussed in the following
 

sections. Hopfield and Tank(1985)showed that certain classes ofoptimization problems
 

can be mapped and solved on the Hopfield model. They deiripnstrated the computational
 

power and speed oftheir neural network model by(suboptimally) solving, among other
 

problems,the classic NP-complete problem known asthe Traveling Salesman Problem.
 

Hopfield and Tank have shown that if a proper topology is chosen and if
 

interconnections for a given network is defined correctly, a solution can be obtained in
 

reasonable time. Following the work of Hopfield, many researchers have used neural
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networks for signal processing such as bearing estirriation(Luo& Bao, 1992;Rastogi et
 

al., 1987) and maximum entropy deconvolution (Marrian & Peckerari 1987). In these
 

applications, high speed processing,or more precisely, real time processing,is desirable.
 

iHeuronl
 

wl wt>
 

Figure 1.1 The Topology ofHopfield Neural Network(HNN)
 

are.
 

fully connected with each other as shown in Figure 1.1. Outl,out2,out3 are the,outputs
 

ofthe neurons. The wi's are the weights which represent the interconnection strengths
 

between neurons. The state ofeach neuron is determined by the outputs ofneighboring
 

neurons. The outputs generated in one step become the inputs during the next step.
 

The dynamics ofthe neurons in HNN's can be described in both discrete and continuous
 

(analog)space. The model designed for this thesis is described in continuous space.
 

There are certain aspects to consider when dealing with HNNs. Ifa HNN is used to
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solve a given prohlem,it usually hastwo major disadvantages. First,the output vector of
 

the neurons is guaranteed to converge only to a local ininimum instead of the global
 

minimum,while the latter woulci be the best solution. Second,progranuning complexity
 

when applying such HNN'sto problems is usually very large. Considerable computation
 

is invested in finding the correct neural interconnection strengths(weights)from the given
 

data set of the problem to be solved (Dayhoff, 1990). Another issue involved is the
 

choice ofthe proper energy function and activation function.
 

The programming complexity(Takeda et al, 1986)ofa neural network was defined
 

as the number ofarithmetic operations that must be performed in order to determine the
 

proper interconnectipn strengths(weights)for the problem to be solved. In conventional
 

digital computers, once a program is compiled and stored in memory, it can be used on
 

many different sets ofinput data. In neural networks,"learning" means finding a proper
 

set ofweights that result in the desired behavior ofa neural network. The program and
 

data are generally mixed and stored in the weights. A set of weights corresponds to a
 

specific instance ofa problem. Much time is thus invested to find the proper weights.
 

For this reason,the concept ofprogramming complexity becomes significant in the realm
 

ofneural networks.
 

It is not meaningful to compare the efficiencies ofconventional digital computers to
 

neural computers. Basically, they are two different kinds of machines. A digital
 

computer can give an exact solution better than a neural computer can. Although neural
 

networks are programmed in consideration ofperforming the proper number ofoperations
 



specified by the programming complexity, they are not guaranteed to provide an exact
 

solution. Another difference is that it is necessary to re-determine the interconnection
 

strengths each time we use new data sets.
 

1.2 Discrete-step HNN
 

The discrete-time Hopfield network, being a feedback network,is characterized by a
 

binary output vector at any given instant of time. The interactions of the processing
 

elements cause the energy function to converge to a local minimum,which could be one of
 

the desired solutions. In figure 1.2, a single-layer feedback neural network is shown,
 

ii,...,i„ are the external inputs, wy are the weights,and v,are the outputs.
 

threshold
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V/l
 
neuron i
 

TnrBshcId
 

v2
 

v2
 

wn I
 neuron 2
 

vn
 
in
 

vn
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Figure 1.2 Single-layer Feedback Neural Network
 



The;:Energy;Function. ^
 

The energy function in aHNN provides usinsight into the behavior ofthe network.It 

is used in proving that the network converges. The energy function is usually defined in 

n-dimensional output space v". The scalar-valued energyfunction for a discreteHNN hasa 

quadratic form: ■ 

E--l/2v'Wv+eV
 

where0is the threshold vector
 

W is the connectivity weight matrix
 

and V is the outputvector.
 

In the expanded fomi,it is equalto
 

,, , ^ i=i J=i i i
 

The output ofeach neuron v,is updated according to thisformula;
 

^ Wj,v/-0/ >0
 

vv'^^= -(j vP, if2 w^,v/-e.- =0 (1.3)
 

The network eventually converges, i.e. the outputs no longer change. The proof of
 

convergence isfollowing: The equation 1.2 can be expanded into
 



 

 

 

 

E= -ZZ "Z
 
^ y ?• i-kj^k j-k
 

(1.4)
 

So,when a new state is generated,the new energy becomes
 

r-—i(V"(Z 2 v,w*)+(.t-*/w«+ 2.S »vvv„.>}+erf"

— y 7 i^'ig~k
 

-I (1-5)
 
.■ = Jr 

^AEt = E""'-E 

= -— { ~^'^)(Z Z ^■'' ) "^ [( I-a" ) ~('l'k) ] Wa-a-] +9yVi. - V'k) 
~ j i ' 

(1-6) 

since Wy~ w;i, and w,-r= 0 

.-. AEa-=-(vy^''-VA:)(Z w,t, v>) + 0i<vy""'-Vi) 
./ 

= _(vy--v,)(Z w^r>-e,) 
■ ■ ./ ■ 

suppose if I,by equation 1.3 

if Z - 61< 0, and v^r equal to either 1 or -1, then (v/'^^-va-) <0 
j 

=>AEi-<0 

suppose if va"®"'=-1, by equation 1.3 

if Z A^'y 6 / > 0, and Vi- equal to either 1 or -1, then (vy^''-VA-) > 0 



=> AEa-<0
 

From the above analysis, we can conclude that no matter what the new state of\\ is, 1 or
 

-1, the Liapunov energy function always decreases, and since there is a lower bound, it
 

converges to a local minimum.
 

1.3 Continuous HNN
 

Hopfield has also described a continuous-variable version of the binary-valued
 

associative memory (1984). In this model, the output node (neuron) is uniquely
 

determined by the instantaneous input to the node;that is,
 

^output
 

gi'^(Voutput)
 

where the output is a continuous and monotonically increasing function of the
 

instantaneous input. Typically, the input-output relation gi(//,), is a sigmoidal curve.
 

For example, might be gi(»,)=1/(1+ exp{-ti^).
 

Continuous-time HNN perform similarly to discrete time networks. Time is
 

assumed to be a continuous variable in continuous-type networks. In continuous PINN,
 

continuous activation functions are necessary. Updating neurons occurs continuously in
 

time with every network output. The cOntinuous-type ITNN converge to one of the
 

stable minima in the state space. Evolution of this network model is in the general
 

direction of negative gradient for the energy function. In applications, tv-pically the
 

energy function is made equivalent to a certain objective function that needs to be
 

minimized,leading to an output which is close to the desired solution.
 



!
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n 

Figure 1.3 The Neural Network Model Using Electrical Components 
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Figure 1.4 The Input Node of the i'thNeuron 



 

 

so
 

■that changes in time are described continuously, rather than as discrete update times for 

individual units: With some inspiration from electrickl circuits, the processing units are 

- ; (1.7) 

=g;'(v/)-v" ■ 

where G,is a constant, 7?,•is controls unit j's decay resistance (7?, > 0), I,- is external input to, 

unit /, and V/ is the output ofunit i after the activation function is applied. W/, is the weight 

between neuron / and neurony. w,,vy is the current which will be generated:; 

Electrically, Wy Vyniight be understood to present the electrical current input to cell / 

due to the present potential of cell j. The term (- u, 'R) is current flow due to finite 

transmembrarie resistance 7?,-, and it causes a decrease in //,. I, is any other fixed input 

current to neuron /. 

IS 

:e(^ =-1/25;;£ w^viv+j; iiV,-f2; (7^,) j/'gi-^(v).7y ; ; (1:8) 
■ V J 

The proof of convergence follows: For symmetric Wy, the;time derivative is 

: (L9) 

The quantity in square brackets is the right hand side of (1.7), so 

http:gi-^(v).7y


 

dEldt= -J] ijdvJdt)C,dvM:y^ : i (1.10)
 

or
 

dEldt^ ' (Lll)
 

because gr - (v,) = %fV cv, is nonnegative, and so are G, and the term (cM /dtf:
 

Accordingly,; - '
 

dE/dt<0,md dE/dt=0implies dVi/dt^O for ail i.
 

Since E is bounded, equation (1.11) shows that the system moves in state space toward
 

lower and lower values ofE,md comes to rest at one ofthe rniinma. The continubus

valued Hopfield net is thus shown to be globally stable. The memorization of patterns,
 

however,is more complex than in the case ofthe binary-valued model. The stable points.
 

The memorized patterns are determined not only by the prescription
 

Wy= V,V} . -T'

but also by the shape ofg(ii)and by the value ofR,.
 

. . - CHAPTERTWO
 

Complex Neural Networks
 

2.1 Introduction
 

Complex-domain neurons are sometimes preferred in modeling since they are able to
 

capture more complexity. For example, many signals are best described with complex
 

values, such as in electric circuits, oscillators, and radar signals. Takeda and Goodman
 

(1986)suggested Hopfield neural networks using complex numbers; Little et al. (1990)
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discussed the complex weights ofthe backpropagation neural network; Georgiou(1992)
 

discussed the activation functions of complex-domain neural networks; Georgiou and
 

Koutsougeras (1992) derived the complex domain backpropagation so that it can
 

accommodate suitable activation functions; a circuit implementation ofthe corresponding
 

neuron with the complex domain was also proposed in the same paper.
 

Generally speaking, a complex-domain neuron will be more complex than a real-


domain one. When extending a neural network from the real domain to the complex
 

domain,certain problems arise. The energy and activation functions may not be suitable
 

in the complex domain because singularities may be introduced when the domain is
 

extended to the complex plane. Forexample,activation functionsin the real domain such
 

as h(x)= \l{\+exp{-x))and tan/?(x), are undefined in the complex domain whenx=i{2n +
 

l);r,n=0,1,2,...
 

Thus, it is necessary to use activation functions which can properly handle complex
 

numbers. Three suitable activation functions for neural networks in the complex domain
 

have been discussed in(Georgiou, 1992),which are thefollowing:
 

Lfi(z)=rz/(rc+l^l), r and c are positive real constants,which could both be taken to be
 

1. The property ofthisfunction is mapping a pointz=x+/y=(x,y)on the complex plane
 

to a unique point^z)=(rx/(c+|z|),ry/(c+|z|))and on the open disc {z:|z|<r}. The phase
 

angle ofz is the same as that ofJ{z). This function is suitable for complex domain
 

backpropagation,as well asthe complex HNN.
 

2.f2Xz)-Z/|z|,with_^(0)= 0. This function normalizes the magnitude ofz to unity.
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while the phase remains the same. It limits the output ofa neuron by having only phase
 

information which can be exploited into having ultra-fast optical implementations(Noest,
 

1988). This function is used in the Complex Perceptron (Georgiou, 1992). Its use is
 

also possible in the complex domain backpropagation: This fimction is the one used in
 

this work.
 

= c/* if\ arg(z/<^) \ < n/q,where and k=0, 1,2, (^-1).In other
 

words,the output ofthe neuron/^(z)belongs to the set ofthe q roots ofunity, which are
 

evenly distributed over the unit circle on the complex plane. In arg(x), the phase angle x
 

is taken to be in the interval (-/T, 7f\. This function is used in the discrete version ofthe
 

Complex Perceptron.
 

The validity ofthese functions is asserted by their applicability to three conceptually
 

different models; perceptron,Backpropagation,and Hopfield models.
 

2.2 Implementations
 

In developing complex neural networks, several studies have mentioned the complex
 

weights and activation functions with complex domain. For example, the
 

backpropagation neural network learning algorithm (Little et al., 1983)is generalized to
 

include complex-valued weights for possible optical implementation. In their approach,
 

the outputs and the weights of neurons are allowed to be complex. A complex-valued
 

neural network(Yang et al.,1994)for solving the direction ofarrival estimation which can
 

be solved by the maximum likelihood or linear prediction methods was presented. It
 

shows that the processing time is greatly reduced so that the network can update the array
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weights very rapidly to accommodate any new arriving signals. Different generalizations of
 

backpropagation(Birx and Pipenberg, 1989;Georgiou,1992)for complex-valued weights
 

were described. These papers suggested ways to define the weights and activation
 

functions ofcomplex neural networks.
 

Many phenomena in nature,engineering,and science are described best by using such
 

complex-domain models. Examples include electric circuits, oscillators, and the
 

processing of various signals such as Fourier Transformations. The difficulties of
 

developing a complex neural network are in finding the weights and activation functions.
 

Different kinds of problems require finding different kinds of weights and activation
 

functions. It could possibly take a long time to find the proper weight and suitable
 

activation function for a given problem.
 

2.3 ComplexHNN
 

2.3.1 Discrete^step ComplexHNN
 

In the discrete-step complex Hopfield net,the weight matrix is Hermitian,i.e.
 

Wji="^. ALiapunov function is:
 

£=-1/2
 

j=l i=\
 

where/is an activation function.
 

Georgiou (1992) suggested that the activation functions^ andfs can be used in this
 

discrete complex HNN. The stable memory vectors are stored using the
 

complex version ofHebbian learning(Georgiou, 1992):
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s=l
 

2.3.2 Continuous Complex BOVN
 

The continuous complex Hopfield neural network(Szilagyi et al., 1990)is characterized
 

JV
 

byN coupled differential equations dz\l dx. Wy (̂^(t))+h,
 
y=i
 

where T is the complex constant input to neuron i, and the complex variable z is what is
 

commonly called the net input, or the weighted sum ofthe inputs, ofa particular neuron.
 

It is expressed asz=x+;>>, where x and y are its real and imaginary parts. Likewise, m
 

and V are the real and imaginary parts ofthe output ofthe activation function; = w(x,
 

j)+zv(x,j). It was shown (Szilagyi et al,I990)that function E is a Liapunov function,
 

.V A' N
 

i.e. iffi / ift < 0. E =-1/2]^^ /Wj,j5-Re(^ /I,). It was proved (Georgiou,
 
■ ■ ■ • ■■■ ■ ■ i=l -_;-=r i=l ■ ■ ■ ■ 

1992)that activation functionsfor complexHNN satisfies the following condition:
 

dEIdt=^ (z/x{dxJdif+Vy(dyldX)^+{d}ddt){dyldi){iiy+ Vx))<0.
 
j=i
 

Upon substituting the partial derivatives forf2we get
 

N
 

dEIdx= ((x dyldt-ydxIdCfl|zp)<0,
 
z=i
 

which showsthat^can be used in the continuous complex Hopfield net.
 

The complexHNN was not thusfar implemented as a circuit in neither the frequency
 

(complex) domain nor in the time (real) domain. In the following chapters, circuit
 

components which correspond to complex weights are designed. These components are
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used in the circuit design of the complex HNN. Furthermore, the designed circuit is
 

mapped into an equivalent circuit that operates in the time doriiain,where all quantities are
 

real. , ,
 

CHAPTERTHREE
 

Implementations ofComplex Neural Networks
 

A complex Hopfield neural network is able to take real as well ascomplex numbers as
 

input and still converge. In a circuit, the complex weights can be represented as optical
 

signals when both magnitude and phase information are included (Szilagyi et al., 1990).
 

The iniplementation ofhardware circuits and using them to solve agiven problem can yield
 

faster results than when relying on software simulations. The circuits which designed for
 

the complex weights ofneural networks can provide a faster solution than the traditional
 

ones. The circuit developed includes; inductors, OP-Amps(Operational amplifiers),
 

capacitors, and resistors. The designed weights were tested on a DFT(Discrete Fourier
 

Transforms)circuit in implemented hardware. In the designed complex circuits,the same
 

frequency is used throughout each circuit.
 

3.1 Implementation ofComplex Weights
 

The role the weights play in a neural network is to connect two neurons properly.
 

Extending the weights from the real domain to the complex domain,a method to simulate
 

the complex weight and generate correct outputsmust be found. Using SPICE, a
 

simulation ofthe implementation of complex weights was used to design such circuits.
 

Several circuit blocks which can synthesize different types ofcomplex weights is designed.
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3.1,1 The Weights in the Real Domain
 

Several circuits were designed to represent the real weightsshown below, where Ri,
 

R2...Rn and Rl are resistors, Vi, V2... Vn are inputs, and Voutput is output. Op is an ideal
 

OP-Amp.
 

Ri
 
Rl
 

-vvv
 

R2
 

V2 c

NdUTPUT
 

OP
 

RN
 

-AA.

Figure 3.1 The Weights in the Real Domain
 

By setting the value ofthese resistors Ri, R2,...., Rn, and Rl,the weight in a neural
 

network can be siinulated. The relationship between the input and the output in the
 

circuit is similar to the one in the neural network.
 

According to the Kirchoff's rule.
 

(3.2) 
R, A
 Rn 

■Ay Here, -(^—,-(—) Av-(—^) represent the weights
-:A A A 

In the matrix forms: 
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Output=Input X Weights
 

[Fo„,Vo„Vo, PV,]
 

Woo, Woi,... Wo(N-l)
 

Wio, W„,... Wl(N-l)
 

[Vio, Vii, Va...Vi|N.„] X W20, W21,... W2(N-1)
 

W(N-1)0, W(N-l)lv- W(N-1)(N-1)
 

where Voo,Voi,..., Vo(n-i)are the output vectors,Vio, Vn,Vi2...Vi(N.i)are the input vectors,
 

Woo, Woij..., W (n-ixn-1) are the weights and N is the dimension. The relationship
 

between the input and the output in the circuits can be represent as the weights in neural
 

networks.
 

3.1.2 An Inverter
 

An inverter is used in the representing of negative weights in the circuit design.
 

Negative weights are simulated by having negative input to positive resistance. Thus,
 

negative resistance is avoided in the design. Asshown in Figure 3.2,
 

Voutput (R/R)Vnetinput ~ Vnetinput
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'^AA
 

K.
 

Viinetinput
 
\^OUTPUT
 

OP

r"
 

Figure 3.2 The Circuit ofAn Inverter
 

3.1.3 	The Weights in the Complex Domain
 

Three basic elements are used to construct the entire circuit representing the weights.
 

1. The Type a+biofComplex Weights,where r? and b are positive real numbers. C in
 

figure 3.3 is a capacitor.
 
RO
 

wv
 

R1
 

ViNPUT
 
"VOUTPUT
 

OP
 

Figure 3.3 The Weights a+ in the Complex Domain
 

According to theX/>c/7q/f'x rule; Voutput=-(Ro/Ri+i<»RoC)Vinput
 

where &> = 2;r;; and/"is the frequency. (3-3)
 

So weknow ifthe weight=(q+bi), an inverter is used to obtain a negative input Vinput,
 

and proper values ofRo,Ri,C,and 6)are chosen so thata=Ro/Ri,b-coRoC.
 

2. The Type a-hrofComplex Weights. Whenthe weight is represented by a-bi,where
 

a and^ are positive real numbers, another circuit to represent q-bi is used. Here, an
 

inductorL is used.
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RO
 

R1
 

A/vV

"VINPUT
 

VoUTPUT
 
OP
 

Figure 3.4 The Weights a-bi in the Complex Domain
 

According to theX/>c/zq^'5 rule:
 

V,OUtpiit -Rp/(Ri + icoL) Viinput
 

— —Ro(Ri -io)L)'(Rf + o/L^) Vi„piit
 

= -((RoR,/(Rf - yi?)-iRoO}L/(Ri' V^„pu,
 

So, if the weight ={a-bi), an inverter is used to obtain a negative input Vinput,and
 

proper values ofRo,Ri,C,and co are chosen so that
 

a=RoRi/(Rf+yy},b=Ro(i}L/(Ri^+yy) (3.4)
 

A passive circuit thatimplements type a-biappears in figure 3.6. It can be used when
 

0<a< 1. ■ 

VI R V2
 

1/^
 

C
 

a-bi
 

In Figure 3.5, according to the rule:
 

V2/Vl={iJi(dC)l{K+{l/icbC))
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=(1-io}RC)/(1+(cyRC)^)
 

so,a= 1 /(1 +(©RC)^), b= <yRC/(1+(©RC)^).
 

3.2An Example Using Complex Weights
 

Signals are expressed as afunetion oftime in thetime^domain representation. In the
 

18th Century, J. B. Fourier showed that almost any signal can be expressed as a sum of
 

sinusoids of various frequencies. In signal processing, the Fourier Transform is a very
 

powerful mathematical tool for understanding, analyzing, and solving problems such as
 

filtering (Elliott and Rao,1982).
 

Engineering problems often require information about the spectral content ofsignals.
 

The Fourier Transform,X(f)ofa continuous signal x(t),is(Limited, 1989);
 

^(/) =r x(t) dt (3.5)
 

t:time
 

/:frequency.
 

X{f) is called the spectrum ofthe signal x{t). By sampling the time and frequency
 

variables and limiting the computations to a finite set ofdata points,the continuous-time
 

Fourier Transform can be made suitable for digital computation. This modified version
 

ofthe Fourier Transform is usually referred to as DFT. The input ofDFT is a sequence
 

ofnumbers rather than a continuous function oftime x(t). The sequence ofnumbers,
 

referred to as a discrete time signal, usually result from the periodical sampling of the
 

continuous signal x{t). TheDFT equation for the evaluation ofX{k)gives.
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-ImknIN
 (3.6)
 
^ n=0
 

k=0, 1,2,
 

using matrix form,it becomes
 

X = xW (3.7)
 

where
 

X=[X,X,X, X...,]
 

I. — I^Xq Xj
 

w w 	 w
 

W
^0
 

w =
 

w w 	 w
 

-ImknlN

where Wkn = e
 

Wis the weight matrix,which is fixed:
 

Weight= =cos{27dm IN)+i-sm(27dm/N) (3.9)
 

n=0, 1, .... N-l;
 

k=0, I,... N-l;
 

N:dimension ofthe matrix.
 

Since the traditional way ofcomputing DFT is software sequential processing. It is
 

unable to operate on the entire vector of sampled data simultaneously (Culhane and
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Peckerar, 1989). A circuit in hardware could operate on the entire vectors at the same
 

time and thus overcome this disadvantage. First,the 2-dimensioned(N=2)DFT circuit is
 

designed.
 

1 1
 
The weight matrix ,and the circuit is shown in Figure3.6.
 

1 -1
 

RO
 

Wv
 

RI 1
 

Wv
 
VI
 

R12
 
voi
 

OP
 

i -1
 

R2I
 

RO
 

R22
 

VvV
 
VI2
 

V02
 

I .OP
 

Figure 3.6 The Circuit with N=2
 

1 1 1 1 

IfN=4,the weight matrix 
1 

1 

-7 

-1 

-1 

1 -1 
,and the circuit is shown in Figure 3.7. 

1 7 -1 -7 
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1 1 1 1 1 1 1 1
 

1-/ -1-7 -1+7 1+7"
 
1 -7 -1 7
 

^f2. - vV^ V2
 
1 —i -1 7 1 -7 -1 7
 

-1-7 1-7 1+7" —1+/
 
I 7 -1 -7
 

V2
IfN=8,the weight matrix
 
1 -I T -1 1 -I 1 -1
 

-1+7 1+7 1-7 -1-7"
 
1 -7 -1 7
 

V2 ■ 
1 7 -1 -7 1 7 -1 -7
 

1+7 -1+7" -1-7" 1-7"
 
1 7 -1 -7
 

V2 .V2 ,
 

and the circuit is shown in Figure 3.8. The previously designed complex weights are
 

used in these circuits.
 

In order to obtain the weights easily, we set the value ofthe resistor l(f =IKQ,
 

(0=2k*l(f-ItcK. Let us consider the type a+ bi ofa complex weight,from the
 

equation(3.3),we know that
 

I
 
a=
 

1
 
R,=—
 

a
 

b=-2K-lK-lK-C
 

For the type a-Z>7,from the equation(3.4),
 

R^mL
 
a=— and b-

T-*' 'T'
 

CO R R^+(d^1}
 

since =10^ =\M
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R,=aK , L
 
Ik
 

if = 10" is given.

7^1 -1 CO'I:
 

RO
 

-VA
 

R1 1
RO
 

VO I
 

1} f" O?
 

//^o
 
rL2 1
 

AV-^
 

R^l
 

RO
 

r:2
/
 

RO
 

^AV-^
\W
 
<zzz
 

VT2
 

OP

FOZZL
 

VA^
 
K3Z
 

R-i2
 

RO
 

RO
 

C -VvV
 VA-

R-23
 

R3
 

R43
 

RO
 

-^A
 
R43
 

0-—-^A\
 AV—'
 

\ \ 
C24
 

\ ' \
 

O?
 

R3
 

w-v—
 

C4.4 .'
 

If
 

—VA ^
 

Figure 3.7 The.Circuit with i\=4
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\
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\\ R12
 

-VA
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l;\\/ 

R18
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-\V^
 

vu

f\\ ^ ,
•—
 

i siU \ i -"
 
\ iii\ \ A L.22A\ (-2a'|1)\1 \ ^
 

!!l \ V ■'./■ 

ii iU-A ./': ; 1 1 • 1 ■ V RiT 

C32 

R32 OP 

OP 
R-iSf L48 

RO 

R52 

OP 

R5S 

R61 

OP1 C68 / 

R681 //ii 
V06 

y/ 
1 

1 / . . i 
1 

/ 
\j U 

<1 / 7'i ■ ■
1 : 

OP 

era 

RT8 
RSI 

I R82 7 OP 
^A^ J ! O 

R8S Lsa 

Figure 3.8 The Circuit with N~ 8 
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3.3 Results ofthe DFT Simulation
 

3.3.1 Inputs
 

The dimension of the input data for DFT circuits are N=2, 4, 8, 16, and 32
 

respectively. The data to be transformed is a simple unit down-step shown in Fig 3.9.
 

The first halfis 1 Volt(high)and the other halfis0Volt(low).
 

OV
 

N/2
 

Figure 3.9 TheInput Data ofSimulating Complex Weights
 

3.3.2 Outputs
 

Figure 3.10a, 3.10b, 3.10c are the results of simulating the DFT's. The upper
 

figures are the true output from traditional DFT computing (software). The lower
 

figures are the simulating results which generated fî om the designed circuits(hardware).
 

Their results are the same. It shows that the designed circuits correctly simulate the
 

complex weights.
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In figure 3.10a,the upper plots are the outputfrom DFT program;thelower plots are
 

the result from the circuit simulation. The plots on the left side are the real parts; and the
 

right side are imaginary parts. Both results are identical.
 

he Output iVom Ul-'T
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1 he Output Irom designed circuits
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Figure 3.10a The Output ofSimulating the Complex Weights(N=2)
 

In figure 3,10b,the upper plots are the output from DFT program;the lower plots are
 

the result from the circuit simulation. The plots on the left side are the real parts; and the
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right side are imaginary parts.
 

1 he Output from DF I
 
0;5
 

0-l< 0.2
 

0.4 0.15
 

0.35
 0.1
 

0 3 0.05,
 

0.25
 
0
 

■ :.o  -0.05
 

0.15
 
-0.1
 

0 I
 

-0.15
 
0.05.
 

-0.2
 
0
 

-0,25
 

The Output froin designed circuits
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Figure 3.10b The Output ofSimulating the Complex Weights(N=4)
 

In figure 3.10c,the upper plots are the outputfrom DFX program;the lower plots are
 

the result from the circuit simulation. The plots on the left side are the real parts; and the
 

right side are imaginary parts. The designed circuit was tested up to N = 32. (see
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Appendix A). These results showed that the output which was generated from the
 

circuits simulation is identical to the actual output from aDFT computer program.
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Figure 3.10c The Output ofSimulating the Complex Weights(N=8)
 

CHAPTERFOUR
 

Decomposing the Complex HNN into a Real Coupled One
 

4.1 The Limitation ofSPICE
 

Using the circuits designed for the complex weights, a complex HNN with two
 

neurons is shown in Figure 4.1. As mentioned before, there are suitable activation
 

functions for neurons in the complex domain. In the circuit design, the magnitude ofa
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wave form is represented by the absolute value, which is part ofthe activation function
 

used. The problem of using SPICE to simulate the complex HNN is that the current
 

version of SPICE cannot determine the instantaneous niagnitude ofa complex voltage.
 

Therefore, another method to represent the complex HNN is needed, in order to be
 

simulated.
 

Input_l
 

vl'
 

W12 euron1
 

Activation Function
 

Input_2
 

Oi
W21
 

neuron2 Activation function
 

^ C
 

Figure 4.1 Complex HNN with Two Neurons
 

In figure 4.1, a two-neuron complex HNN is shown. Wn and W21 are the complex
 

weights. Input_l and mput_2 are external inputs, Vr and V2'are outputs. C is a capacitor,
 

and the activation functions are properly designed for the complex domain.
 

4.2 Decomposing the Gomplex HNN into a Real Coupled One
 

The complex HNN is decornposed into one in which every complex neuron is
 

replaced by two real coupled neurons. Figure 4.2 shows a complex neuron I with output
 

Vi=Oh 2 + Im(0)2
 



 

Gocnpiexinput
 

neuron 1
 
Vi
 

V]
 
V/
 

activationfunction
complex weight
 
Capacitor
 

Figure 4.2 The i'th Complex Neuron
 

The equivalent of neuron i in the real domain is shown in figure 4.3. It consists of
 

two real coupled neurons. In figure 4.3, W_R is the real part and W_I is the imaginary
 

part ofthe complex weight W. Input_R is the real part and input_I is the imaginary part
 

ofthe external input. Vi_R is the real part and Vj_I is the imaginary part ofinput Vj
 

which is:the outputfrom neuronj,and C_iis the imaginary part ofthe impedance capacitor
 

]CcC. The capacitor is treated as a weight with zero inputs since it is grounded.
 

Vj_R V/ R 
InputiR 

0 r 
VLB 

Vl_l -W i euron activation 

-cj 
function R 

Input!.! 
-a? 

VLR w 

Yp W_R ! 
1 ) 

activation 

Vi 

-C function 

-0,r
 

Figure 4.3 Decomposing a Complex Neuron into Two Real Neurons
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The activation function _/(r)-z I \ z \ m this model is represented by a dependent
 

voltage source. The absolute value is determined by the realpart and the imaginary part of
 

the outputs. So,in figure 4.3,
 

Vi_R= 0_r/ \]{0_t)2 +(0_i)2,
 

Vi_I = 0_i/ V(0_r)2 + (0_i)2.
 

Unlike other complex neurons which need capacitors and inductors,only resistors are
 

required to represent the weight in figure 4.3. This is one of the advantages of this
 

model.
 

The complex HNN in Figure 4.1 can be decomposed as shown in figure 4.4. In
 

figure 4.4, Vi rand V2_rare the real parts, and Vijand Vjjare the imaginary parts ofthe
 

complex number Vi and V2 which are shown in Figure 4.3. Inputl_r is the real part and
 

inputl_i is the imaginary part ofthe external input1. Wi2_Ris the real part and Wi2jisthe
 

imaginary part ofthe complex weight W12,and C_i is a resistor, as explained above.
 

4.3The Equivalency ofthe Complex and Real Circuits
 

To see that the circuit oftwo real coupled neurons (figure 4.4) is equivalent to a
 

single complex neuron(figure 4.2), Consider the net input to complex neuron j:
 

netj= 2 WjVj
 

then,Re(netj)=Re(2 wjvj)=Re(^ ((wj_R+ Wj_i)+(yj_R+/*Vjj))
 
J j '
 

=Z (Wj_RVj_R-Wj_iVjj).
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Im(netj)=Im(^ wjvj)=Im(2 ((wj_R+wjj)+(vj r+;* Vjj))
 
, ' J J . .
 

= E (WjRVj_I-WjjVj_R).
 

By mspection of figure 4.3, it can be seen that the quantities Re(neti) and Im(netj)
 

correspond to the net inputs ofthe two real neurons.
 

J W12_r
 
neuroni_rL_
 

V2_i -W12 i
 activation function1
 

^-01 i
 
VI I W21 r ^ incutZ r 
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/ne rurort2 
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. inputl_i
 

V2 I W12 1
 
Oi- I
 

neuron i r
 

Vl i -W12 r C^irh activation functioni_i
 
-Ol_r
 

VI r W21 i incut2 i

7
 
P"V^/neurorL2_r
 

W21 r
 ^JLj activation function2 i
 
VI i -62 r
 

Figure 4.4 Decomposing the ComplexHNN to Real Coupled Networks
 



It is clear tHat Re(netj)corresponds to the net input ofone real neuron in figure 4.4, and
 

Im(netj)to another,and both neurons correspond to complex neuronj.
 

4.4 Mapping Complex Equations to RealOnes
 

In this section, it will be shown how to solve a simultaneous system of complex
 

equations in the real domain. Although the mapping used was previously discussed
 

(Eaton, 1983),to our knowledge it was not used for this purpose.
 

Suppose C is the field of complex numbers, C" is the n- dimensional complex vector
 

space of n-tuples(columns)ofcomplex numbers, and Cn is the set of all n * n complex
 

matrices. Each x e (E° has the unique representation x= ^/ +iv with u, v gR". The u is
 

the real part ofx,v is the imaginary part ofx,and i=4^ is the imaginary unit.
 

This representation ofx defines a real vector space isomorphism between C"and R^.
 

for x G C",let
 

u
 

gR'

[X]

where x=u f iv,
 

and [ax+by]=a[x]+b[y],for x,y g C",a,b g R.
 

IfC G C",then C=A+/B where A and B are n * n real matrices.
 

Thusfor X= M +/v G (E",
 

Cx ==(A+/B)(//+iv)=Am-Bv+;(Av+B?<).
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So
 

A//-Bv A, -B u
 

[Cx]=
 

Av+Bii A_ ■ V, 

The above mapping can be usedin solving a simultaneous system ofcomplex equation. 

For example,ifthere is a linear problem, 

"2-3/
 

WX=
 

3+5/
 

where weight matrix
 

3+/, 2-/
 

■ W ■ ■ 

_5+2/,6-7i
 

the unknow vectorX
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Vi
 

X ,where vi=ui+ius, V2= U2+iu^
 

V2
 

The system is mapped into the real domain asfollows:
 

3 , 2 1 , -T
 

A= ;B= ,and
 

5 , 6 2 , -7
 

2-i.
 

B , A _3+5i._
_. ^-'2 _
 

111 V 2'
, -B
 

3
"2 i =:
 

-1
"3 ■ 

B ;/4 ; 5

' A
 

Solving the above real system,we obtain =60/73, 2/2=-74/73, Us=-S7/73,
 

114-27173. It can be verified that the answer to the original complex system is /
 

(60/73-/*87/73,-74/73+7*27/73)as expected.
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CHAPTERFIVE
 

Results
 

5.1 TheInput and Qutput ofSimulating the ComplexHNN
 

The complex HNN was simulated by first being mapped an equivalent real circuit.
 

Consider the case ofa complex HNN with two complex neurons as shown in figure 4.1.
 

Ajfter decomposing the complex numbers,figure 4.4 shows that inputl_r is the real part
 

and inputl_i is the imaginary part ofthe externalinput!shownin figure 4.1;input2_r is the
 

real part and input2_i is the imaginary part ofthe external input2 shown in figure4.1. In
 

figure 4.4, VI_r is the real part and Vl_i is the imaginary part ofthe complex output VI
 

shown in figure 4.1; V2_r is the real part and V2_i is the imaginary part ofthe complex
 

output2 shown in figure 4.1.
 

5.1.1 Input ofPulses[1,-1]
 

When the complex weight
 

0, 0.004+0.002/
 

W = ,the output is shown in figure 5.1.
 

0.004-0.002/, 0
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Figure s.! Input ofPulses with Different Weights[0.004,0.002]
 

In figure 5.1, the first plot is the Inputs which are pulses[1,-I]. The second plot is the
 

real parts ofthe outputs which are pulses[0.999000, -0.999000]. The third plot is the
 

imaginary parts ofthe outputs which are pulses[-0.003000,-0.001000].
 

When the complex weight
 

! 0 O.Ol-fO.03/
 

W= ̂ ,the output is shown in figure 5.2.
 

0:01-0.03/ 0
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Figure 5.2 Input ofPulses with Different Weights[0.01,0.03]
 

In figure 5.2,the first plot is the Inputs which are pulses[1,-1]. The second plot is the
 

real parts ofthe outputs which are pulses[0.998557, -0.99856]. The third plot is the
 

imaginary parts ofthe outputs which are pulses[-0.050000,-0.050000].
 

When the complex weight
 

0, 0.3+0.4/
 

W= ,the output is shown in figure 5.3,
 

0.3-0.4/, 0
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In figure 5.3, the first plot is the Inputs which are pulses[1,-1]. The second plot is the
 

real parts ofthe outputs which are pulSes[0.943280, -0.943280]. The third plot is the
 

imaginary parts ofthe outputs which are pulses[-0.375000,-0:375000].
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Figure 5.3 Input ofPulses withDifferent Weights [0.3, 0.4] 
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5.1.2Input ofConstants[1,-1]
 

When the complex weight
 

0, 0.004+0.002; I
 

I
 

W=	 j,the output is shown in figure 5.4.
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Figure 5.4 Input ofConstants[1,-1]with Different Weights[0.004,0.002]
 

In figure 5.4,the first plot is the Inputs which are constants[1,-1]; The second plot
 

is the real parts ofthe outputs w'hich are constants[0.998992, -0.999000]. The third
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plot is the imaginary parts ofthe outputs which are constants[-0.003000,-0.001017].
 

When the complex weight ■ 

7 j o, ; 0.0R0.03/ 

W= I - ,the output is shown in.figure 3.5. 
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Input of Constants [1, -1] with DiflTerent Weights [0.01, 0.03] 

In figure 5,5, the first plot is the Inputs which are constants [1, -1]. The second plot 

is the real parts of the outputs which are constants [ 0.998496:, -0.998560]. The third plot 
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is the imaginary parts ofthe outputs which are constants[-0.029502,-0.031483].
 

When the complex weight
 

i 0,: ,0.3+0.4/ I '
 
■ ;' ' ■ j ■ ■ ■ .. ■ "■ ' ' . ■ ■ ' ■ ■ ■ ■ ' 

W= 	 j, the output is shown in figure 5.6. 
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Tigure 5.6 Input of Constants [1, -1] with Different Weights [0.3, 0.4] 

In figure 5.6, the first plot is the Inputs which are constants [1, -1]. The second ploi is 

the real parts of the outputs which are constants [ 0.942459, -0.943280]. The third plot is 

the imaginary parts of the outputs which are constants [-0.331750, -0.329600]. 
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5.1.3 The Complex BDWwith Four Neurons
 

The extension ofthe complex HNN was also simulated. The performance ofthis model
 

with four neurons is the following: when the complex weight
 

■ . r- ' _ 

l o ,0.001+0.001/,0.005-^0.006;,0.G0K0.002/
 

W- 0.001-0.001/,0. ,0.002+0.003/,0.001+0.003/
 

0.005-0.006/, 0.002-0.003/, 0 ,0.002+0.004/
 

I 0.001-0.002;V0.001-0.003/,0.002-0.004/,0
 

and the input are pulses[-1, 1,-1, 1],the output is shown in figure 5.7.
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Figure 5.7 Input ofPulses in the Complex HNN with Four Neurons
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In figure 5.7,the first plot is the Inputswhich are pulses[-1, 1,-1, 1]. The second plot is
 

the real parts ofthe outputs which are pulses[-0.99899,0.998986,-0.99899,0.998986],
 

The third plot is the imaginary parts of the outputs which are pulses [-0.020000, 0,
 

0.080000,0.020000]. Using the same weights and constant inputs [1, -1, 1, -1], the
 

output is shown in figure 5.8.
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Figure 5.8 Input of Constants in the Complex HNN withFour Neurons 
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Infigure 5.8,the first plotis the Inputs which are [1,-1, 1,-1]. The spcond plPtis
 

the real parts of the outputs which'are Gonstants[0;998926, -0.998990, 0.998926, 

0.998990]. The third plot is the imaginary parts ofthe outputs which are the constants
 

[0.014739,0.003000,-0.078580,-0.022000 ].
 

As shown above, when the inputs are pulses, the real parts of the outputs take
 

Symmetric values, and the imaginary parts remain the same. The values for the weights
 

were varied,but the output remained close to the input as shown. The correctness ofthe
 

design was verified with the aid ofa C program. To avoid posing singularities, a small
 

constant was added to the activation tunction which became/(z)=z7(|z|+ 10"").
 

Conclusions
 

A circuit corresponding to the complex HNN has been designed in this study. In
 

particular, complex weights were designed as circuit components. The same type
 

weights were applied to design DFT circuit for validation.
 

To overcome the limitation ofSPICE, a mathematical method was found to map a
 

complex HNN into an equivalent real coupled one with weights represented as resistors.
 

In general, complex weights include resistors, capacitors, and inductors. The correctness
 

ofthe design was experimentally confirmed Avith the aid ofa C program. A systematic
 

method was used to solve a simultaneous system ofcomplex linear equations by mapping
 

them into the real domain. Using this method,many problems involving complex values
 

can be solved by decomposition into the real domain. When compared to traditional
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HNN models,the complex HNN is more general, as it contains the real valued HNN as a
 

special case.
 

It is hoped a future version ofSPICE can run the complex HNN simulation directly,
 

and that the complex EDSIN will be manufactured as a chip.
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APPENDIX A
 

The Simulation ofthe DFT with N =16,32
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Figure a The Simulation ofthe DFT with N=16
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The Output from OF!
 
0.40
 

0.5 

0.45 0.30 

0.4 
0.20 

0.35 

0.3 0.10 

0.25 
0.00 

rT~^ 
a. I, i 

0.2 "7 91 5 3 B 5 1 1 13 15 17 19 21 23 25 27 29 31 33 
-0.10 

0.15 

O.I -0.20 

0.05 

.5. .a. g g. j. .5. .5. 5. g 
-0.30 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 ,33 -0.40 

I he Outputfrom designed circuits
 
0.4
 

0.5
 

0.3
 
0.45
 

0.4 0.2
 

0,35
 
0.1
 

0.3
 

0.0
 Q =
0.25 

3 5^7 9 U 13 15 17 19 21 23 25 27 29 31 3
 
0.2
 -0.
 

0.15
 
-0.2
 

O.I
 

-0.3
0.05
 

11. -B. .a. .a. §. j. .a
 
-0.4
 

1 3 5 7 9 11 13 15 17 19 21 13 25 27 29 31 33
 

Figure b The Simulation ofthe DFX with N=32
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APPENDIXB
 

The SPICE Code ofSimulating Complex HNN
 

Subckcs
 

.liubckt: OF p n out
 

Hop cut 0 OFAM? p n
 
.L-nds 0? .
 

.subckt adder abed virtual_gnd out
 
xi 0 virtual_gr.o cut- C?
 
r.l, a virtual_cr.d Ig
 
r2 b virtual_gnd Ig
 

r3 c virtual_gnd Ig
 

r4 d virtual_gr.d Ig
 

zS outl virtual_gr.d Ic
 
e_al out- 0 VCL=.'V(out1) * -1'
 
.unds adder
 

.Gubckt mul in out n=u— o 

■e_raull 	out 0 VCL='V(.in) * m' 
.ends mul 

o
 
Parameters
 

.param wl2r = C' . .Gl wl2i= C.Q3 
taram ■w21r = 0.01 w21i= -0.03 

.param ci=0.0"1 

'.param vi= 0 v:= i. td= lns t 

Ckts 

Vil_r input1_r 0 pulse vl vl td tr
 

Vll_.i input1_.i 0 pulse vi vi
 td tr 

V:.2_.r input2_.r 0 pulse v2 v2 td tr
 

Vi2_.i input2_.i C pulse vi vi td tr
 

v.Tr.= 'wl2r'xl v2r olrr mul 
v.'m= ' -1. * wl2i'x2 v2i olri m.ul 
v.-m.= 'ci'x3 oli olci m^ul 

x^. vlr o2rr miul v,-m= ' w21r ' 

xb vli o2ri mul wm.= '-l * w21i' 

xt o2i o2ci mul vm='ci' 
= 'wl2i'x". v2r olir miul 

v.-m;='wl2r'xS v2i olii mul 

xb olr olcr mul \,-m.= '-l * ci' 

xlO vlr o2ir ■m.ul '^■m.= 'w21i 

xil vli o2ii mul wT7.= 'w21r' 
xl2 o2r o2cr mul v."r.= '-l * ci' 

x:-3 inputl_r olrr clri olci vtg_olr olr adder
 
x'_4 input2_r c2rr c2ri o2ci vtg_o2r o2r acder
 
x:5 inputl.i olir clii olcr vtg_oli oli adder
 
x;6 'input2_i o2ir e2ii o2cr vtg_o2i o2i adder
 

» norml vlr 0 vci='V(olr)/(sqrt(V(olr)*V(olr)+V(oli)*V(oli) )^Im) ' 
- no-m3 vli 0 VCL='V(oli)/(sqrt(V(olr)*V(olr)+V(oli)♦V(oli) )+Im) ' 
o norm2 v2r 0 V0L='V(o2r)/(sqrt(V(o2r)*V(o2r)+V(o2i)-V(o2i) )-Im) ' 
^_no-m4 v2i 0 V0L='V(o2i)/(sqrt(V(o2r)*V(o2r)+V(o2i) (o2i) )>lm) 
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******* paraTievers • ,
 

.oarain wl2r=0.j1 wx2i=0..01 _ .
 
'.param wl3r=0.-:5 wl3i=0.06 . ,
 
.Daram'wl4r=2.:i wl4i=0'.02
 
.param w21r=0.:i w2ii=-0.01 
..Dararu w23r=j.-'i w23i=0.03 
.Daram v;24r=3.Cl '.v24i=0.03 
Daram w31r=C.35 w^ii=-0.0
.Daram w32r=:.:2 v;32i=-Q..03 ■ ■ 
.Daram w34r=:.:2 w34i=0.04
 

.param, w41r=2.^
 

.param w42r=2.-- >»"42.i=-0.Oj .
 

.param w43r=-.32 v43i=-0.0-=
 

.param ci=0.21 .
 

.caram vi=G vl^l v2=-l td=lr.s "=ln3 tf=lns. pw=99ns pt=20.;r.s
 

Mair. c;-;as 	 .
 

V-:i - inpu-:_r G pulse yl vl pd sr tr pw p.

ir.pu--l_i ; pulse vi vi ud sr tf pw pt
 

Vi2"r inpu--2_r:pulse v2 vl' pd pr tt pw pt
 
Vi2"i iriupl.p C pulse vi vi p= tr tt pw pt


■V<3~r in4u--3_r 1 pulse vl vl. td tr tf pw pt,
Vil'i intupl_p 3 pulse vi vi td tr tt pw pt
Virr input-:_r I pulse v2 v2 tu tr tf pw p.

•Vir< ir.pup4_i pulse vi Vi PS tr tf pw p. ^ ;
-ViV r i-—-- r Pulse vl vl td tr tt pw pt ac t
4 inpur.-p 0 vi vi td tr tf pw pt adZ',;-; 4i.— - C- pulsepulse v2 v2 Pd tr tf pw pt ac 1, 180 

g d.ise vi.vi td tr tf pw pt ac o 
- =ir. iO.O 2.5 M-lMes Ons) ac 1 

.Vi,l_i nl_i : sin (0.0 0.0 lOCMeg -3°, xsoISSli : 43 ;o:o 0:5 ICOMeg ons.'ac 0 
^ tv-m='v7l2r'
 

xl v2r > ^
 
x2 v2i clr_:i r.up wni= - wl3r'
x3 v3r c:r_dr ...up wrr, w - ,

x4 v3i clr_:-4 PU- -1
 

A	 ^^ wiri^ vJ--
x5 v4r C-r_-P- ^ 

\Nn]a='w21r'
4u='-i - •••.■2iix3 vlP UP- -- ^^,„23r'
 

x9 vpr cp-_-- , .^,23i.
 
xlO v3i dpr_pp ...-4 wm- 
xll v4r =2r_4r r.ul .
 
xl2 v4i c^r_-.i ^
 

S 3; ifci 
Xlt V4r c3r_4r real v®-_w--
Xl8 V4"i cir_4i r.ul wm=-

-ul wm='w4Xii? Vi- - ----- , , w4ii
x20 vli c4r_:p r.ul
 
x21x/x V2'- c4r_2r mul wm= . »
v^- v;42i'
 
x22 v2i c4r_-- 7..^,
 
x23 v3r P4r_3r r.ul wpt>= w.p
X24 v3i P4r_:-i rul wm=, -

x25 v2r cli_2r r.ul witi=;wl2i'

x26 v2i Pli_2i -ui wffl=_wpP-_

x27 v3r cli_lr nul wm- wp.-p_
 
-oq v3i cli_3i mul wm= wi--
x29 v4r cli_4r mul wm='wl4i'^ 
y.q.j '-4 3 wm='wl4r' 

"	 x31 vlr o2i_li mul w™='/''f:

x32 vli c2i_li mul vm- wppp^

^33 v3r P2i_lr mul wppp_

--i mul wm= wii

^35 ;'4; TlDr mul
^35 v4i P2i_4p mul wm= w.,
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x37 vlr,o3i_lr mul wm='w31i'
 
x33 vli o3i_li mul wm='w31r'
 
x39 v2r o3i_2r mul wm='w32i'
 
x40 v2i o3i_2i mul wm='w32r'
 
".41 v4r o3i_4r mul wra='w34i'
 
x42 v4i o3i_4i mul wm='w34r'
 

x43 vlr c4i_lr mul wm='w41i'
 
x44 vli o4i_li mul wm='w41r'
 
x45 v2r o4i_2r mul v.'m='w42i'
 
x46 v2i o4i_2i mul wm='w42r'
 
x47 v3r o4i_3r mul wm='w43i'
 
x43 v3i o4i_3i mul wm='w43r'
 

olr_oli vtg_olr olr adosr
x49 inpucl_r clr_2r olr_2i c:r_3r olr_3i olr_4r olr_4
 
x50 inpuc.2_r c2r_2r o2r_2i c^ir_3r o2r_3i
 
x51 input:3_r o3r_lr o3r_li c3r_2r o3r_2i
 
x52 input4_r o4r_lr o4r_li c4r_2r o4r_2i
 
x53 inputl_i oli_2r oli_2i cli_3r oli_3i
 
x54 inpuD2_i c2i_ir o2i_li c2i_3r o2i_3i
 
x55 input3_i c3i_lr o3i_li c'3i_2r o3i_2i
 
x55 input4_i c4i_lr o4i_li c4i_2r o4i_2i
 

x57 oil olr_cli mul
 

x53 o2i o2r_c2i mul wm='ci'
 
x59 o3i o3r_c3i mulr;vm='ci'
 
xoO o4i o4r_c4i mul
 

x61 olr oli_olr mul wm='-l * ci'
 
x62 o2r o2i_c2r .mul V/'m='-l • ci'
 
x63 o3r o3i_o3r m:ul wm='-l • ci'
 

■ xc4 c4r o4i_c4r m.ul wm='-l * ci' 

c2r_4r o2r_ o2r_o2i vt:g_o2r c2r adder
 

o3r_4r o3r. o3r_o3i vtg_o3r c3r adder
 

c4r_3r o4r. o4r_o4i vtg_o4r o4r adder
 

oli_4r oli_ oli_olr vtg_oli cli adder
 
c2i_4r p2i_,41 o2i_o2r vtg_o2i c2i adder
 

o3i_4r o3i..41 o3i_Q3r vtg_o3i c3i adder
 

o4i_3r o4i.3i o4i_o4r vtg_o4i c4i adder
 

e._ncrml vlr 0 VQL='V(olr)/(sgrt(V(olr) (olr)+V(oli)*V(oli))^Im)' 

e._norm3 vli C VOL='V(oli)/(sort(V(olr)*7(olr)+V(oli)*V(oli))+lm)' 

e._norm2 ■ v2r 0 V0L='V(o2r)/(sqrt(V(o2r)*V(o2r)+V{o2i)*V(o2i))+lm)' 

e._r.crm>4 v2i 0 VGL='V(o2i)/(sqrt(V(o2r)''V(o2r)+V{o2i)*V(o2i))+lm)' 

e._norm5 v3r C V0L='V(o3r)/(sqrt(V(o3r)"V(o3r)+V(o3i)*V(o3i))+lm)' 

e._norm5 v3i 0 V0L='V(o3i)/(sqrt(V(o3r)*V(o3r)+V(o3i)*V{o2i))+lm)' 

e._norm7 v4r 0 VOL='V(o4r)/(sqrt(V(o4r)*V(o4r)+V(o4i)*V(o4i))+lm)' 

e._nor.mS v4i 0 VOL='V(o4i)/(sqrt(V,(o4r)*V(o4r)+V(o4i)*V(o4i))+lm)' 

Analysis
 
.option probe post=l delmax=2n
 
.op 100ns
 

♦.ac dec 10 1 lOCk 
.tran .2n 41On 

.print tran v(inputl_r) 

.print tran V{input2_r) 

.print tran V(input3_r) 

.print tran V(input4_r) 

.print tran V(inputl_i) 

.print tran v(input2_i) 

.print tran v(input3_i) 
•print tran V (i-nput4_i) 
.print tran V(olr^ 
.print tran V(cli/ 
.print tran V(vlr) 
•print tran V(vli} 
•print tran V(o2r) 
.print tran V(o2i) 
.print tran v(v2r) 
.print tran v(v2i) 
•print tran y(o3r) 
•print tran V(o3i) 
•print tran v(v3r) 
.print tran v(v3i) 
.print tran V(o4r) 
.print tran V(o4i) 
-.■print ■ tran V(v4r) 

.print tran v(v4i) 

.end • 

52 



BIBLIOGRAPHY
 

Birx,D.L.,&Pipenberg, S. J.(1989). Neural network structures for defect
 
discrimination. Fifth Annual Aerospace Applications ofArtificial Intelligence
 
Conference.24-26.
 

Culhane,A.D.,&Peckerar,M.C.(1989). A neural net approach to discrete Hartley
 
and Fourier Transforms.IEEE Transaction.695-703.
 

DayhofF,J.(1990). Neural network architectures. Van Nostrand Reinhold.
 
52-57.
 

Elliott,D.F.,& Rao,K.R.(1982). Fast transforms; algorithms, analyses,
 
applications. Prentice Hall.
 

Eaton,M.L.(1983). Multivariate statistics - a vector space approach. John Wilev&
 
Sons.Inc.. 370-374.
 

Georgiou,G.M.(1992). Activation functions for neural networks in the complex
 
domain. First International Conference on Fuzzv Theory and Technoloav.
 

Georgiou,G.M.,& Koutsougeras,C.(1992). Complex domain backpropagation.
 
IEEE Transactions on circuits and svstems.vol. 39.No.5.
 

Hopfield,J. J.,(1982). Neural network and physical systems with emergent collective
 
computational abilities. Proceedings ofthe National Academv ofSciences ofthe
 
U.S.A. 79.2554-2558.
 

Hopfield, J. J., (1984). Neurons with graded response have collective computational
 
properties like those of two-state neurons. Proceedings of the National Academv of
 
Sciences ofthe U.S.A. 81.3088-3092.
 

Hopfield, J. J., & Tank, D. W.(1986). Simple neural optimization networks: an AID
 
converter,signal decision circuit, and a linear programming circuit.IEEE Trans.
 
Circuits Svst. vol. CAS-36.533-541.
 

Little, G.,Steven,R.,Gustafson, C.,& Senn,R.A.(1990). Generalization ofthe
 
backpropagation neural network learning algorithm to permit complex weights.
 
APPLIED OPTICS,vol. 29.No. 11.
 

Limited,I.(1989). Digital signal processing. Prentice Hall. 132-133.
 

53
 



Noest,A.J.(1988).Neural information processing systems. American Institute of
 
Physics.New York.584-591.
 

Szilagyi,M.,Mikkelsen, J. C.,& Mortansen,K.H.(1990). Some new thoughts on
 
neural networks with complex connection matrices. Technical ReportDAIMI
 
332.
 

Takeda,M.,& Goodman,J. W.(1986). Neural networks for computation: number
 
representations and programming complexity. APPLIED OPTICS,vol. 25.
 
No. 18..
 

Yang,W.H.,Chan,K.K.,& Chang,P.R.(1994). Complex-valued neural network for
 
direction ofarrival estimation. Electronics Letters, vol. 30.No. 7.
 

Zurada,J.M.(1992). Introduction to artificial neural systems. West Publishing
 
Company.251-300.
 

54
 


	Hardware implementation of the complex Hopfield neural network
	Recommended Citation


