2,808 research outputs found

    Effects of observer peculiar motion on the isotropic background frequency spectrum: from monopole to higher multipoles

    Get PDF
    The observer peculiar motion produces boosting effects in the background anisotropies with frequency spectral behaviours related to its spectrum. We study how the frequency spectrum of the background isotropic monopole emission is modified and transferred to the frequency spectra at higher multipoles, l. We perform the analysis in terms of spherical harmonic expansion up to a certain lmax, for various models from radio to far-IR. We derive a system of linear equations to obtain spherical harmonic coefficients and provide explicit solutions up to lmax=6 as linear combinations of the signals at N=lmax+1 colatitudes. The associated Legendre polynomials symmetry with respect to {\pi}/2 is used to separate the system into two subsystems, one for l=0 and even l, the other for odd l. This improves the solutions accuracy with respect to an arbitrary colatitudes choice. We apply the method to analytical or semi-analytical representions of monopole spectra, i.e. to four types of CMB distortions, four types of extragalactic backgrounds superimposed to the CMB Planckian spectrum and some combinations of them. We present our results in terms of spherical harmonic coefficients, relationships between the observed and intrinsic monopoles, maps, angular power spectra. We compare the method results with the ones obtained using more computationally demanding numerical integrations or map generation/inversion. The method is generalized to include the effect of the observer motion relative to the Sun. Its simplicity and efficiency can significantly alleviate the computational effort needed for accurate predictions and for the analysis of future data. We discuss the superposition of the CMB intrinsic anisotropies and of the effects induced by the observer motion, exploring for the possibility of constraining the intrinsic dipole embedded in the kinematic dipole, in the presence of CMB spectral distortions.Comment: 33 pages, 14 figures, 3 appendices; version very close to the one in press on Astronomy & Astrophysic

    A low-cost radiation detection system to monitor radioactive environments by unmanned vehicles

    Get PDF
    AbstractUnconventional scenarios with hazardous radioactive levels are expected as consequences of accidents in the industrial sector of the nuclear energy production or following intentional releases of radioactive materials for terrorist purposes (dirty bombs, indoor contaminations, etc.). Nowadays, the need to balance the high standards of safety and security through an effective detection network is a matter of paramount importance. In this work, the authors' challenge has been to design, realize and test a low-cost gamma detection and spectroscopy system which may be used in unmanned vehicles in general and/or drones with low payload capabilities. The designed platform may be used to carry out mapping or localization operations in order to reduce the risk factor for first responders or for the population affected by radiological and nuclear events. In this paper, the design process of a gamma ray detection and spectroscopy system based on affordable and commercially available technologies is presented along with the results of our ongoing characterization of the prototype

    On the Cosmic Isotropic Background from the radio to the far-ir: a new method for theoretical predictions of the frequency spectrum from monopole to higher multipoles

    Get PDF
    We study how the frequency spectrum of the background isotropic monopole emission is modified and transferred to higher multipoles by boosting effects due to the observer peculiar motion. The method, based on a linear system, is suitable for various background radiation models and here applied to several types of cosmic microwave background (CMB) distorted photon distribution functions and extragalactic background signals superimposed onto the CMB Planckian spectrum, spanning the range between the radio and the far-infrared (far-IR). We derive explicit solutions for the spherical harmonic coefficients up to any desired multipole, ℓ max, in terms of linear combinations of the signals atjust N = ℓ max + 1 colatitudes. For appropriate choices of these colatitudes, the symmetry property of the associated Legendre polynomials with respect to π/2 allows the separation of the system into two subsystems, one for ℓ = 0 and even multipoles and the other for odd multipoles, and improves the solution accuracy. The simplicity and efficiency of this method can significantly reduce the computational cost needed for accurate predictions on the whole sky and for the scientific analysis of data from future projects. Moreover, in the presence of CMB spectral distortions, this formalism, combined with the representation of CMB intrinsic anisotropies, provides a new test to constrain the intrinsic dipole embedded in the kinematic dipole

    The HotSpot Code as a Tool to Improve Risk Analysis During Emergencies: Predicting I-131 and CS-137 Dispersion in the Fukushima Nuclear Accident

    Get PDF
    Conventional and non-conventional emergencies are among the most important safety and security concerns of the new millennium. Nuclear power and research plants, high-energy particle accelerators, radioactive substances for industrial and medical uses are all considered credible sources of threats both in warfare and in terror scenarios. Estimates of potential radiation releases of radioactive contamination related to these threats are therefore essential in order to prepare and respond to such scenarios. The goal of this paper is to demonstrate that computational modeling codes to simulate transport of radioactivity are extremely valuable to assess expected radiation levels and to improve risk analysis during emergencies helping the emergency planner and the first responders in the first hours of an occurring emergency

    Development and performance testing of a miniaturized multi-sensor system combining MOX and PID for potential UAV application in TIC, VOC and CWA dispersion scenarios

    Get PDF
    The development of a tool to reduce the exposure of personnel in case of inten- tional or accidental toxic chemicals dispersion scenarios opens the field to new operational perspectives in the domain of operator safety and of critical infrastructure monitoring. The use of two sensors with different operating principles, metal oxide and photo-ionization detector, allows to confirm the presence of specific classes of chemicals in a contaminated area. All instruments are expected to be integrated into the payload of an unmanned aerial vehicle (UAV) and used for different purposes such as critical infrastructure surveillance focused on the volatile organic chemical and chemical warfare agents (CWA) detection and the post-incident of contamination level monitoring. In this paper, the authors presented the hardware set-up implemented and the test realized with CWAs simulants and will discuss the results obtained presenting advantages and disadvantages of this system in an application such as a UAV for the detection of chemical substances

    Design of Miniaturized Sensors for a Mission-Oriented UAV Application: A New Pathway for Early Warning

    Get PDF
    In recent decades, the increasing threats associated with Chemical and Radiological (CR) agents prompted the development of new tools to detect and collect samples without putting in danger first responders inside contaminated areas. A particularly promising branch of these technological developments relates to the integration of different detectors and sampling systems with Unmanned Aerial Vehicles (UAV). The adoption of this equipment may bring significant benefits for both military and civilian implementations. For instance, instrumented UAVs could be used in support of specialist military teams such as Sampling and Identification of Biological, Chemical and Radiological Agents (SIBCRA) team, tasked to perform sampling in contaminated areas, detecting the presence of CR substances in field and then confirming, collecting and evaluating the effective threats. Furthermore, instrumented UAVs may find dual-use application in the civil world in support of emergency teams during industrial accidents and in the monitoring activities of critical infrastructures. Small size drones equipped with different instruments for detection and collection of samples may enable, indeed, several applications, becoming a tool versatile and easy to use in different fields, and even featuring equipment normally utilized in manual operation. The authors hereby present the design of miniaturized sensors for a mission-oriented UAV application and the preliminary results from an experimental campaign performed in 2020

    Four Years of Continuous Seafloor Displacement Measurements in the Campi Flegrei Caldera

    Get PDF
    We present 4 years of continuous seafloor deformation measurements carried out in the Campi Flegrei caldera (Southern Italy), one of the most hazardous and populated volcanic areas in the world. The seafloor sector of the caldera has been monitored since early 2016 by the MEDUSA marine research infrastructure, consisting of four instrumented buoys installed where sea depth is less than 100 m. Each MEDUSA buoy is equipped with a cabled, seafloor module with geophysical and oceanographic sensors and a subaerial GPS station providing seafloor deformation and other environmental measures. Since April 2016, the GPS vertical displacements at the four buoys show a continuous uplift of the seafloor with cumulative measured uplift ranging between 8 and 20 cm. Despite the data being affected by environmental noise associated with sea and meteorological conditions, the horizontal GPS displacements on the buoys show a trend coherent with a radial deformation pattern. We use jointly the GPS horizontal and vertical velocities of seafloor and on-land deformations for modeling the volcanic source, finding that a spherical source fits best the GPS data. The geodetic data produced by MEDUSA has now been integrated with the data flow of other monitoring networks deployed on land at Campi Flegrei

    NEMO-SN1 Abyssal Cabled Observatory in the Western Ionian Sea

    Get PDF
    The NEutrinoMediterranean Observatory—Submarine Network 1 (NEMO-SN1) seafloor observatory is located in the central Mediterranean Sea, Western Ionian Sea, off Eastern Sicily (Southern Italy) at 2100-m water depth, 25 km from the harbor of the city of Catania. It is a prototype of a cabled deep-sea multiparameter observatory and the first one operating with real-time data transmission in Europe since 2005. NEMO-SN1 is also the first-established node of the European Multidisciplinary Seafloor Observatory (EMSO), one of the incoming European large-scale research infrastructures included in the Roadmap of the European Strategy Forum on Research Infrastructures (ESFRI) since 2006. EMSO will specifically address long-term monitoring of environmental processes related to marine ecosystems, marine mammals, climate change, and geohazards
    • …
    corecore