109 research outputs found

    Toll-like receptor 2 gene polymorphisms, pulmonary tuberculosis, and natural killer cell counts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate whether the toll-like receptor 2 polymorphisms could influence susceptibility to pulmonary TB, its phenotypes, and blood lymphocyte subsets.</p> <p>Methods</p> <p>A total of 368 subjects, including 184 patients with pulmonary TB and 184 healthy controls, were examined for TLR2 polymorphisms over locus -100 (microsatellite guanine-thymine repeats), -16934 (T>A), -15607 (A>G), -196 to -174 (insertion>deletion), and 1350 (T>C). Eighty-six TB patients were examined to determine the peripheral blood lymphocyte subpopulations.</p> <p>Results</p> <p>We newly identified an association between the haplotype [A-G-(insertion)-T] and susceptibility to pulmonary TB (p = 0.006, false discovery rate q = 0.072). TB patients with systemic symptoms had a lower -196 to -174 deletion/deletion genotype frequency than those without systemic symptoms (5.7% vs. 17.7%; p = 0.01). TB patients with the deletion/deletion genotype had higher blood NK cell counts than those carrying the insertion allele (526 vs. 243.5 cells/μl, p = 0.009). TB patients with pleuritis had a higher 1350 CC genotype frequency than those without pleuritis (12.5% vs. 2.1%; p = 0.004). TB patients with the 1350 CC genotype had higher blood NK cell counts than those carrying the T allele (641 vs. 250 cells/μl, p = 0.004). TB patients carrying homozygous short alleles for GT repeats had higher blood NK cell counts than those carrying one or no short allele (641 vs. 250 cells/μl, p = 0.004).</p> <p>Conclusions</p> <p>TLR2 genetic polymorphisms influence susceptibility to pulmonary TB. TLR2 variants play a role in the development of TB phenotypes, probably by controlling the expansion of NK cells.</p

    Newborn Genetic Screening for Hearing Impairment: A Preliminary Study at a Tertiary Center

    Get PDF
    Universal newborn hearing screening (UNHS) is of paramount importance for early identification and management of hearing impairment in children. However, infants with slight/mild, progressive, or late-onset hearing impairment might be missed in conventional UNHS. To investigate whether genetic screening for common deafness-associated mutations could assist in identifying these infants, 1017 consecutive newborns in a tertiary hospital were subjected to both newborn hearing screening using a two-step distortion-product otoacoustic emissions (DPOAE) screening and newborn genetic screening (NGS) for deafness. The NGS targeted 4 deafness-associated mutations commonly found in the Taiwanese population, including p.V37I (c.109G>A) and c.235delC of the GJB2 gene, c.919-2A>G of the SLC26A4 gene, and mitochondrial m.1555A>G of the 12S rRNA gene. The results of the NGS were then correlated to the results of the NHS. Of the 1017 newborns, 16 (1.6%) had unilateral DPOAE screening failure, and 22 (2.2%) had bilateral DPOAE screening failure. A total of 199 (19.6%) babies were found to have at least 1 mutated allele on the NGS for deafness, 11 (1.1%) of whom were homozygous for GJB2 p.V37I, 6 (0.6%) compound heterozygous for GJB2 p.V37I and c.235delC, and 1 (0.1%) homoplasmic for m.1555A>G, who may potentially have hearing loss. Among them, 3 babies, 5 babies, and 1 baby, respectively, passed the NHS at birth. Comprehensive audiological assessments in the 9 babies at 3 months identified 1 with slight hearing loss and 2 with mild hearing loss. NGS for common deafness-associated mutations may identify infants with slight/mild or potentially progressive hearing impairment, thus compensating for the inherent limitations of the conventional UNHS

    Emulsified Nanoparticles Containing Inactivated Influenza Virus and CpG Oligodeoxynucleotides Critically Influences the Host Immune Responses in Mice

    Get PDF
    Antigen sparing and cross-protective immunity are regarded as crucial in pandemic influenza vaccine development. Both targets can be achieved by adjuvantation strategy to elicit a robust and broadened immune response. We assessed the immunogenicity of an inactivated H5N1 whole-virion vaccine (A/Vietnam/1194/2004 NIBRG-14, clade 1) formulated with emulsified nanoparticles and investigated whether it can induce cross-clade protecting immunity.After formulation with PELC, a proprietary water-in-oil-in-water nanoemulsion comprising of bioresorbable polymer/Span(R)85/squalene, inactivated virus was intramuscularly administered to mice in either one-dose or two-dose schedule. We found that the antigen-specific serum antibody responses elicited after two doses of non-adjuvanted vaccine were lower than those observed after a single dose of adjuvanted vaccine, PELC and the conventional alum adjuvant as well. Moreover, 5 microg HA of PELC-formulated inactivated virus were capable of inducing higher antibodies than those obtained from alum-adjuvanted vaccine. In single-dose study, we found that encapsulating inactivated virus into emulsified PELC nanoparticles could induce better antibody responses than those formulated with PELC-adsorbed vaccine. However, the potency was rather reduced when the inactivated virus and CpG (an immunostimulatory oligodeoxynucleotide containing unmethylated cytosine-guanosine motifs) were co-encapsulated within the emulsion. Finally, the mice who received PELC/CpG(adsorption)-vaccine could easily and quickly reach 100% of seroprotection against a homologous virus strain and effective cross-protection against a heterologous virus strain (A/Whooper swan/Mongolia/244/2005, clade 2.2).Encapsulating inactivated H5N1 influenza virus and CpG into emulsified nanoparticles critically influences the humoral responses against pandemic influenza. These results demonstrated that the use of PELC could be as antigen-sparing in preparation for a potential shortage of prophylactic vaccines against local infectious diseases, in particular pandemic influenza. Moreover, the cross-clade neutralizing antibody responses data verify the potential of such adjuvanted H5N1 candidate vaccine as an effective tool in pre-pandemic preparedness

    Functional and Structural Characteristics of Tumor Angiogenesis in Lung Cancers Overexpressing Different VEGF Isoforms Assessed by DCE- and SSCE-MRI

    Get PDF
    The expressions of different vascular endothelial growth factor (VEGF) isoforms are associated with the degree of tumor invasiveness and the patient's prognosis in human cancers. We hypothesized that different VEGF isoforms can exert different effects on the functional and structural characteristics of tumor angiogenesis. We used dynamic contrast-enhanced MRI (DCE-MRI) and steady-state contrast-enhanced MRI (SSCE-MRI) to evaluate in vivo vascular functions (e.g., perfusion and permeability) and structural characteristics (e.g., vascular size and vessel density) of the tumor angiogenesis induced by different VEGF isoforms (VEGF121, VEGF165, and VEGF189) in a murine xenograft model of human lung cancer. Tumors overexpressing VEGF189 were larger than those overexpressing the other two VEGF isoforms. The Ktrans map obtained from DCE-MRI revealed that the perfusion and permeability functions of tumor microvessels was highest in both the rim and core regions of VEGF189-overexpressing tumors (p<0.001 for both tumor rim and core). The relative vessel density and relative vessel size indexes derived from SSCE-MRI revealed that VEGF189-overexpressing tumors had the smallest (p<0.05) and the most-dense (p<0.01) microvessels, which penetrated deeply from the tumor rim into the core, followed by the VEGF165-overepxressing tumor, whose microvessels were located mainly in the tumor rim. The lowest-density microvessels were found in the VEGF121-overexpressing tumor; these microvessels had a relatively large lumen and were found mainly in the tumor rim. We conclude that among the three VEGF isoforms evaluated, VEGF189 induces the most densely sprouting and smallest tumor microvessels with the highest in vivo perfusion and permeability functions. These characteristics of tumor microvessels may contribute to the reported adverse effects of VEGF189 overexpression on tumor progression, metastasis, and patient survival in several human cancers, including non-small cell lung cancer, and suggest that applying aggressive therapy may be necessary in human cancers in which VEGF189 is overexpressed

    HDAC Inhibition Decreases the Expression of EGFR in Colorectal Cancer Cells

    Get PDF
    Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase which promotes cell proliferation and survival, is abnormally overexpressed in numerous tumors of epithelial origin, including colorectal cancer (CRC). EGFR monoclonal antibodies have been shown to increase the median survival and are approved for the treatment of colorectal cancer. Histone deacetylases (HDACs), frequently overexpressed in colorectal cancer and several malignancies, are another attractive targets for cancer therapy. Several inhibitors of HDACs (HDACi) are developed and exhibit powerful antitumor abilities. In this study, human colorectal cancer cells treated with HDACi exhibited reduced EGFR expression, thereby disturbed EGF-induced ERK and Akt phosphorylation. HDACi also decreased the expression of SGLT1, an active glucose transporter found to be stabilized by EGFR, and suppressed the glucose uptake of cancer cells. HDACi suppressed the transcription of EGFR and class I HDACs were proved to be involved in this event. Chromatin immunoprecipitation analysis showed that HDACi caused the dissociation of SP1, HDAC3 and CBP from EGFR promoter. Our data suggested that HDACi could serve as a single agent to block both EGFR and HDAC, and may bring more benefits to the development of CRC therapy

    Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocara canis in mice

    Get PDF
    BACKGROUND: Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor beta1 (TGF-beta1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain( NF-L), tissue transglutaminases (tTGs), beta-amyloid precursor proteins (AbetaPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. METHODS: BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post- infection (wpi) by Western blotting and RT-PCR. RESULTS: Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-beta1, S100B, NF-L, tTG, AbetaPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. CONCLUSION: Further studies are needed to determine whether there is an increased risk of CT progression into neurodegenerative disease because neurodegeneration-associated AbetaPP and phosphorylated tau emerged in the brain. DOI: 10.1186/1471-2334-8-8

    CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

    Get PDF
    Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    Full text link
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70 MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90\% confidence level.Comment: 24 pages, 5 figure

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore