6,782 research outputs found

    Translational Invariance and the Anisotropy of the Cosmic Microwave Background

    Get PDF
    Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes of the spherical-harmonic coefficients.Comment: Notation improve

    Engineering Carbon Sequestration in the Ocean

    Get PDF
    Second Annual Conference on Carbon Sequestration, Washington, US

    Multi-Lepton Collider Signatures of Heavy Dirac and Majorana Neutrinos

    Full text link
    We discuss the possibility of observing multi-lepton signals at the Large Hadron Collider (LHC) from the production and decay of heavy Standard Model (SM) singlet neutrinos added in extensions of SM to explain the observed light neutrino masses by seesaw mechanism. In particular, we analyze two `smoking gun' signals depending on the Dirac or Majorana nature of the heavy neutrino: (i) for Majorana case, the same-sign di-lepton signal which can be used as a probe of lepton-number violation, and (ii) for Dirac case, the tri-lepton signal which conserves lepton number but may violate lepton flavor. Within a minimal Left-Right symmetric framework in which these additional neutrino states arise naturally, we find that in both cases, the signals can be identified with virtually no background beyond a TeV, and the heavy gauge boson W_R can be discovered in this process. This analysis also provides a direct way to probe the nature of seesaw physics involving the SM singlets at TeV scale, and in particular, to distinguish type-I seesaw with purely Majorana heavy neutrinos from inverse seesaw with pseudo-Dirac counterparts.Comment: 19 pages, 7 figures; typo in eq. 5 fixed; matches published versio

    Feynman Rules in the Type III Natural Flavour-Conserving Two-Higgs Doublet Model

    Full text link
    We consider a two Higgs-doublet model with S3S_3 symmetry, which implies a π2\pi \over 2 rather than 0 relative phase between the vacuum expectation values and and . The corresponding Feynman rules are derived accordingly and the transformation of the Higgs fields from the weak to the mass eigenstates includes not only an angle rotation but also a phase transformation. In this model, both doublets couple to the same type of fermions and the flavour-changing neutral currents are naturally suppressed. We also demonstrate that the Type III natural flavour-conserving model is valid at tree-level even when an explicit S3S_3 symmetry breaking perturbation is introduced to get a reasonable CKM matrix. In the special case β=α\beta = \alpha, as the ratio tanβ=v2v1\tan\beta = {v_2 \over v_1} runs from 0 to \infty, the dominant Yukawa coupling will change from the first two generations to the third generation. In the Feynman rules, we also find that the charged Higgs currents are explicitly left-right asymmetric. The ratios between the left- and right-handed currents for the quarks in the same generations are estimated.Comment: 16 pages (figures not included), NCKU-HEP/93-1

    Passenger transmission and productiveness of transit lines with high loads

    Get PDF
    Deterministic transit capacity analysis applies to planning, design and operational management of urban transit systems. The Transit Capacity and Quality of Service Manual (1) and Vuchic (2, 3) enable transit performance to be quantified and assessed using transit capacity and productive capacity. This paper further defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures the transit task performed over distance. Passenger transmission (p-km/h) captures the passenger task delivered by service at speed. Transit productiveness (p-km/h) captures transit work performed over time. These measures are useful to operators in understanding their services’ or systems’ capabilities and passenger quality of service. This paper accounts for variability in utilized demand by passengers along a line and high passenger load conditions where passenger pass-up delay occurs. A hypothetical case study of an individual bus service’s operation demonstrates the usefulness of passenger transmission in comparing existing and growth scenarios. A hypothetical case study of a bus line’s operation during a peak hour window demonstrates the theory’s usefulness in examining the contribution of individual services to line productive performance. Scenarios may be assessed using this theory to benchmark or compare lines and segments, conditions, or consider improvements

    Commensurate lock-in and incommensurate supersolid phases of hardcore bosons on anisotropic triangular lattices

    Get PDF
    We investigate the interplay between commensurate lock-in and incommensurate supersolid phases of the hardcore bosons at half-filling with anisotropic nearest-neighbor hopping and repulsive interactions on triangular lattice. We use numerical quantum and variational Monte Carlo as well as analytical Schwinger boson mean-field analysis to establish the ground states and phase diagram. It is shown that, for finite size systems, there exist a series of jumps between different supersolid phases as the anisotropy parameter is changed. The density ordering wavevectors are locked to commensurate values and jump between adjacent supersolids. In the thermodynamic limit, however, the magnitude of these jumps vanishes leading to a continuous set of novel incommensurate supersoild phases.Comment: 5 pages, 5 figures, added new results, changed title and conclusio

    reentrance effect in normal-metal/superconducting hybrid loops

    Full text link
    We have measured the transport properties of two mesoscopic hybrid loops composed of a normal-metal arm and a superconducting arm. The samples differed in the transmittance of the normal/superconducting interfaces. While the low transmittance sample showed monotonic behavior in the low temperature resistance, magnetoresistance and differential resistance, the high transmittance sample showed reentrant behavior in all three measurements. This reentrant behavior is due to coherent Andreev reflection at the normal/superconducting interfaces. We compare the reentrance effect for the three different measurements and discuss the results based on the theory of quasiclassical Green's functions
    corecore