750 research outputs found

    A neuronal death model: overexpression of neuronal intermediate filament protein peripherin in PC12 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal accumulation of neuronal intermediate filament (IF) is a pathological indicator of some neurodegenerative disorders. However, the underlying neuropathological mechanisms of neuronal IF accumulation remain unclear. A stable clone established from PC12 cells overexpressing a GFP-Peripherin fusion protein (pEGFP-Peripherin) was constructed for determining the pathway involved in neurodegeneration by biochemical, cell biology, and electronic microscopy approaches. In addition, pharmacological approaches to preventing neuronal death were also examined.</p> <p>Results</p> <p>Results of this study showed that TUNEL positive reaction could be detected in pEGFP-Peripherin cells. Swollen mitochondria and endoplasmic reticulum (ER) were seen by electron microscopy in pEGFP-Peripherin cells on day 8 of nerve growth factor (NGF) treatment. Peripherin overexpression not only led to the formation of neuronal IF aggregate but also causes aberrant neuronal IF phosphorylation and mislocation. Western blots showed that calpain, caspase-12, caspase-9, and caspase-3 activity was upregulated. Furthermore, treatment with calpain inhibitor significantly inhibited cell death.</p> <p>Conclusions</p> <p>These results suggested that the cytoplasmic neuronal IF aggregate caused by peripherin overexpression may induce aberrant neuronal IF phosphorylation and mislocation subsequently trapped and indirectly damaged mitochondria and ER. We suggested that the activation of calpain, caspase-12, caspase-9, and caspase-3 were correlated to the dysfunction of the ER and mitochondria in our pEGFP-Peripherin cell model. The present study suggested that pEGFP-Peripherin cell clones could be a neuronal death model for future studies in neuronal IFs aggregate associated neurodegeneration.</p

    HHP1 is involved in osmotic stress sensitivity in Arabidopsis

    Get PDF
    HHP1 (heptahelical protein 1), a protein with a predicted seven transmembrane domain structure homologous to adiponectin receptors (AdipoRs) and membrane progestin receptors (mPRs), has been characterized. Expression of HHP1 was increased in response to abscisic acid (ABA) and salt/osmotic stress as shown by quantitative real-time PCR and HHP1 promoter-controlled GUS activity. The HHP1 T-DNA insertion mutant (hhp1-1) showed a higher sensitivity to ABA and osmotic stress than the wild-type (WT), as revealed by the germination rate and post-germination growth rate. The induced expression of stress-responsive genes (RD29A, RD29B, ADH1, KIN1, COR15A, and COR47) was more sensitive to exogenous ABA and osmotic stress in hhp1-1 than in the WT. The hypersensitivity in the hhp1-1 mutant was reversed in the complementation mutant of HHP1 expressing the HHP1 gene. The data suggest that the mutation of HHP1 renders plants hypersensitive to ABA and osmotic stress and HHP1 might be a negative regulator in ABA and osmotic signalling

    The Relationship between Qi Deficiency, Cancer-related Fatigue and Quality of Life in Cancer Patients

    Get PDF
    AbstractBackgroundQi (氣 qì) refers to the vital energy of the body in Traditional Chinese medicines (TCM). Qi deficiency (氣虛 qì xū) is the most common symptom in cancer patients according to the concept of TCM. We hypothesized that cancer patients with Qi deficiency suffer from poor quality of life (QOL) and fatigue.MethodAmong the 256 registered cancer patients screened at our outpatient clinic, a total of 198 were enrolled. The inclusion criteria were (1) age between 18 and 70years, (2) cancer diagnosis confirmed by the professional physician, (3) being Chinese, and (4) Eastern Cooperative Oncology Group (ECOG) performance status rating (PSR)≤3. The major outcome is the difference in QOL score in cancer patients with and without Qi deficiency.ResultsThe initial results showed statistically significant differences in WHO-QOL scores in physical, psychological, and social domains between the groups with and without Qi deficiency as well as the groups with and without cancerrelated fatigue (CRF). All patients with CRF present were also diagnosed as Qi deficient. In addition, among the patients with no CRF, 39.9% (69/173) were diagnosed as suffering from Qi deficiency, which led to poor QOL.ConclusionsThe present study showed statistically significant difference in WHO-QOL scores in physical, psychological, and social domains between the groups with and without Qi deficiency as well as the groups with and without CRF. Cancer patients diagnosed with Qi deficiency or CRF have poor QOL. The concept of Qi deficiency in TCM might be applied to cancer health care

    Neuronal degeneration in autonomic nervous system of Dystonia musculorum mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Dystonia musculorum </it>(<it>dt</it>) is an autosomal recessive hereditary neuropathy with a characteristic uncoordinated movement and is caused by a defect in the <it>bullous pemphigoid antigen 1 </it>(<it>BPAG1</it>) gene. The neural isoform of <it>BPAG1 </it>is expressed in various neurons, including those in the central and peripheral nerve systems of mice. However, most previous studies on neuronal degeneration in <it>BPAG1</it>-deficient mice focused on peripheral sensory neurons and only limited investigation of the autonomic system has been conducted.</p> <p>Methods</p> <p>In this study, patterns of nerve innervation in cutaneous and iridial tissues were examined using general neuronal marker protein gene product 9.5 via immunohistochemistry. To perform quantitative analysis of the autonomic neuronal number, neurons within the lumbar sympathetic and parasympathetic ciliary ganglia were calculated. In addition, autonomic neurons were cultured from embryonic <it>dt/dt </it>mutants to elucidate degenerative patterns <it>in vitro</it>. Distribution patterns of neuronal intermediate filaments in cultured autonomic neurons were thoroughly studied under immunocytochemistry and conventional electron microscopy.</p> <p>Results</p> <p>Our immunohistochemistry results indicate that peripheral sensory nerves and autonomic innervation of sweat glands and irises dominated degeneration in <it>dt/dt </it>mice. Quantitative results confirmed that the number of neurons was significantly decreased in the lumbar sympathetic ganglia as well as in the parasympathetic ciliary ganglia of <it>dt/dt </it>mice compared with those of wild-type mice. We also observed that the neuronal intermediate filaments were aggregated abnormally in cultured autonomic neurons from <it>dt/dt </it>embryos.</p> <p>Conclusions</p> <p>These results suggest that a deficiency in the cytoskeletal linker BPAG1 is responsible for dominant sensory nerve degeneration and severe autonomic degeneration in <it>dt/dt </it>mice. Additionally, abnormally aggregated neuronal intermediate filaments may participate in neuronal death of cultured autonomic neurons from <it>dt/dt </it>mutants.</p

    Applications of Infrared Photoacoustic Spectroscopy For Wood Samples

    Get PDF
    Various infrared (IR) spectroscopic techniques for the analysis of wood samples are briefly discussed. Theories and instrumentation of the newly developed photoacoustic spectroscopic (PAS) technique for measuring absorbance spectra of solids are presented. Some important applications of the PAS technique in wood science research are discussed. The application of the Fourier transform infrared-photoacoustic spectroscopic (FTIR-PAS) technique is demonstrated by three preliminary studies of different forms of wood samples

    A novel deep intronic variant strongly associates with Alkaptonuria.

    Get PDF
    Alkaptonuria is a rare autosomal recessive inherited disorder of tyrosine metabolism, which causes ochronosis, arthropathy, cardiac valvular calcification, and urolithiasis. The epidemiology of alkaptonuria in East Asia is not clear. In this study, patients diagnosed with alkaptonuria from January 2010 to June 2020 were reviewed. Their clinical and molecular features were further compared with those of patients from other countries. Three patients were found to have alkaptonuria. Mutation analyses of the homogentisate 1,2-dioxygenase gene (HGD) showed four novel variants c.16-2063 A > C, p.(Thr196Ile), p.(Gly344AspfsTer25), and p.(Gly362Arg) in six mutated alleles (83.3%). RNA sequencing revealed that c.16-2063 A > C activates a cryptic exon, causing protein truncation p.(Tyr5_Ile6insValTer17). A literature search identified another 6 patients with alkaptonuria in East Asia; including our cases, 13 of the 18 mutated alleles have not been reported elsewhere in the world. Alkaptonuria is rare in Taiwan and East Asia, with HGD variants being mostly novel and private

    A global analysis of COVID-19 infection fatality rate and its associated factors during the Delta and Omicron variant periods: an ecological study

    Get PDF
    BackgroundThe Omicron variant of SARS-CoV-2 is more highly infectious and transmissible than prior variants of concern. It was unclear which factors might have contributed to the alteration of COVID-19 cases and deaths during the Delta and Omicron variant periods. This study aimed to compare the COVID-19 average weekly infection fatality rate (AWIFR), investigate factors associated with COVID-19 AWIFR, and explore the factors linked to the increase in COVID-19 AWIFR between two periods of Delta and Omicron variants.Materials and methodsAn ecological study has been conducted among 110 countries over the first 12 weeks during two periods of Delta and Omicron variant dominance using open publicly available datasets. Our analysis included 102 countries in the Delta period and 107 countries in the Omicron period. Linear mixed-effects models and linear regression models were used to explore factors associated with the variation of AWIFR over Delta and Omicron periods.FindingsDuring the Delta period, the lower AWIFR was witnessed in countries with better government effectiveness index [β = −0.762, 95% CI (−1.238)–(−0.287)] and higher proportion of the people fully vaccinated [β = −0.385, 95% CI (−0.629)–(−0.141)]. In contrast, a higher burden of cardiovascular diseases was positively associated with AWIFR (β = 0.517, 95% CI 0.102–0.932). Over the Omicron period, while years lived with disability (YLD) caused by metabolism disorders (β = 0.843, 95% CI 0.486–1.2), the proportion of the population aged older than 65 years (β = 0.737, 95% CI 0.237–1.238) was positively associated with poorer AWIFR, and the high proportion of the population vaccinated with a booster dose [β = −0.321, 95% CI (−0.624)–(−0.018)] was linked with the better outcome. Over two periods of Delta and Omicron, the increase in government effectiveness index was associated with a decrease in AWIFR [β = −0.438, 95% CI (−0.750)–(−0.126)]; whereas, higher death rates caused by diabetes and kidney (β = 0.472, 95% CI 0.089–0.855) and percentage of population aged older than 65 years (β = 0.407, 95% CI 0.013–0.802) were associated with a significant increase in AWIFR.ConclusionThe COVID-19 infection fatality rates were strongly linked with the coverage of vaccination rate, effectiveness of government, and health burden related to chronic diseases. Therefore, proper policies for the improvement of vaccination coverage and support of vulnerable groups could substantially mitigate the burden of COVID-19

    Rapid Trio Exome Sequencing for Autosomal Recessive Renal Tubular Dysgenesis in Recurrent Oligohydramnios

    Get PDF
    Oligohydramnios is not a rare prenatal finding. However, recurrent oligohydramnios is uncommon, and genetic etiology should be taken into consideration. We present two families with recurrent fetal oligohydramnios that did not respond to amnioinfusion. Rapid trio-whole-exome sequencing (WES) revealed mutations in the AGT gene in both families within 1 week. The first family had a compound heterozygous mutation with c.856 + 1G &gt; T and c.857-619_1269 + 243delinsTTGCCTTGC changes. The second family had homozygous c.857-619_1269 + 243delinsTTGCCTTGC mutations. AGT gene mutation may lead to autosomal recessive renal tubular dysgenesis, a rare and lethal disorder that can result in early neonatal death. Both the alleles identified are known alleles associated with pathogenicity. Our findings suggest that trio-WES analysis may help rapidly identify causative etiologies that can inform prompt counseling and decision-making prenatally
    corecore