9 research outputs found

    Grassland vertical height heterogeneity predicts flower and bee diversity: an UAV photogrammetric approach

    Get PDF
    The ecosystem services offered by pollinators are vital for supporting agriculture and ecosystem functioning, with bees standing out as especially valuable contributors among these insects. Threats such as habitat fragmentation, intensive agriculture, and climate change are contributing to the decline of natural bee populations. Remote sensing could be a useful tool to identify sites of high diversity before investing into more expensive field survey. In this study, the ability of Unoccupied Aerial Vehicles (UAV) images to estimate biodiversity at a local scale has been assessed while testing the concept of the Height Variation Hypothesis (HVH). This hypothesis states that the higher the vegetation height heterogeneity (HH) measured by remote sensing information, the higher the vegetation vertical complexity and the associated species diversity. In this study, the concept has been further developed to understand if vegetation HH can also be considered a proxy for bee diversity and abundance. We tested this approach in 30 grasslands in the South of the Netherlands, where an intensive field data campaign (collection of flower and bee diversity and abundance) was carried out in 2021, along with a UAV campaign (collection of true color-RGB-images at high spatial resolution). Canopy Height Models (CHM) of the grasslands were derived using the photogrammetry technique "Structure from Motion" (SfM) with horizontal resolution (spatial) of 10 cm, 25 cm, and 50 cm. The accuracy of the CHM derived from UAV photogrammetry was assessed by comparing them through linear regression against local CHM LiDAR (Light Detection and Ranging) data derived from an Airborne Laser Scanner campaign completed in 2020/2021, yielding an [Formula: see text] of 0.71. Subsequently, the HH assessed on the CHMs at the three spatial resolutions, using four different heterogeneity indices (Rao's Q, Coefficient of Variation, Berger-Parker index, and Simpson's D index), was correlated with the ground-based flower and bee diversity and bee abundance data. The Rao's Q index was the most effective heterogeneity index, reaching high correlations with the ground-based data (0.44 for flower diversity, 0.47 for bee diversity, and 0.34 for bee abundance). Interestingly, the correlations were not significantly influenced by the spatial resolution of the CHM derived from UAV photogrammetry. Our results suggest that vegetation height heterogeneity can be used as a proxy for large-scale, standardized, and cost-effective inference of flower diversity and habitat quality for bees

    Scientific maps should reach everyone: The cblindplot R package to let colour blind people visualise spatial patterns

    Full text link
    Maps represent powerful tools to show the spatial variation of a variable in a straightforward manner. A crucial aspect in map rendering for its interpretation by users is the gamut of colours used for displaying data. One part of this problem is linked to the proportion of the human population that is colour blind and, therefore, highly sensitive to colour palette selection. The aim of this paper is to present the cblindplot R package and its founding function - cblind.plot() - which enables colour blind people to just enter an image in a coding workflow, simply set their colour blind deficiency type, and immediately get as output a colour blind friendly plot. We will first describe in detail colour blind problems, and then show a step by step example of the function being proposed. While examples exist to provide colour blind people with proper colour palettes, in such cases (i) the workflow include a separate import of the image and the application of a set of colour ramp palettes and (ii) albeit being well documented, there are many steps to be done before plotting an image with a colour blind friendly ramp palette. The function described in this paper, on the contrary, allows to (i) automatically call the image inside the function without any initial import step and (ii) explicitly refer to the colour blind deficiency type being experienced, to further automatically apply the proper colour ramp palette

    Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs

    No full text
    Predicting the occurrence probability of species is intrinsically dependent on the quality of the training dataset and, in particular, on the sample prevalence (i.e., the ratio between presences and absences). Whenever the number of presences and absences is not equal within the training dataset, the predictions deviate towards higher values as the sample prevalence increases and vice versa. As a result, probability models of species occurrence with different sample prevalence cannot be directly compared. The favourability concept was introduced to amend this limitation. Indeed, the favourability – i.e., the variation in the probability of occurrence regardless the sample prevalence – could reduce the degree of uncertainty when comparing species distributions despite different sample prevalences. To test this hypothesis, we simulated 50 virtual species and compared the predictive performance of four probability-based and favourability-based Species Distribution Models (GLM, GAM, RF, BRT) under a set of different prevalence values and sampling strategies (i.e, random and stratified sampling). Favourability-based models performed slightly better than probability-based models in predicting the species distribution over geographic space, confirming also their capability to reduce the variability of the predictions across different degrees of sample prevalence.Duccio Rocchini has received funding from the Project SHOWCASE (SHOWCASing synergies between agriculture, biodiversity and ecosystems services to help farmers capitalizing on native biodiversity) within the European Union Horizon 2020 Researcher and Innovation Programme under grant agreement No 862480. Piero Zannini has been supported by LifeWatch Italy through the project LifeWatchPLUS (CIR-01_00028

    Scientific maps should reach everyone: a straightforward approach to let colour blind people visualise spatial patterns

    Full text link
    Maps represent powerful tools to show the spatial variation of a variable in a straightforward manner. A crucial aspect in map rendering for its interpretation by users is the gamut of colours used for displaying data. One part of this problem is linked to the proportion of the human population that is colour blind and, therefore, highly sensitive to colour palette selection. The aim of this paper is to present a function in R - \texttt{cblind.plot} - which enables colour blind people to just enter an image in a coding workflow, simply set their colour blind deficiency type, and immediately get as output a colour blind friendly plot. We will first describe in detail colour blind problems, and then show a step by step example of the function being proposed. While examples exist to provide colour blind people with proper colour palettes, in such cases (i) the workflow include a separate import of the image and the application of a set of colour ramp palettes and (ii) albeit being well documented, there are many steps to be done before plotting an image with a colur blind friendly ramp palette. The function described in this paper (\ttt{cblind.plot}), on the contrary, allows to (i) automatically call the image inside the function without any initial import step and (ii) explicitly refer to the colour blind deficiency type being experienced, to further automatically apply the proper colour ramp palette

    Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs

    No full text
    Predicting the occurrence probability of species is intrinsically dependent on the quality of the training dataset and, in particular, on the sample prevalence (i.e., the ratio between presences and absences). Whenever the number of presences and absences is not equal within the training dataset, the predictions deviate towards higher values as the sample prevalence increases and vice versa. As a result, probability models of species occurrence with different sample prevalence cannot be directly compared. The favourability concept was introduced to amend this limitation. Indeed, the favourability – i.e., the variation in the probability of occurrence regardless the sample prevalence – could reduce the degree of uncertainty when comparing species distributions despite different sample prevalences. To test this hypothesis, we simulated 50 virtual species and compared the predictive performance of four probability-based and favourability-based Species Distribution Models (GLM, GAM, RF, BRT) under a set of different prevalence values and sampling strategies (i.e, random and stratified sampling). Favourability-based models performed slightly better than probability-based models in predicting the species distribution over geographic space, confirming also their capability to reduce the variability of the predictions across different degrees of sample prevalence

    A novel approach for surveying flowers as a proxy for bee pollinators using drone images

    Get PDF
    The abundance and diversity of plants and insects are important indicators of biodiversity, overall ecosystem health and agricultural production. Bees in particular are interesting indicators as they provide a key ecosystem service in many agricultural crops. Worldwide, habitat loss and fragmentation, agricultural intensification and climate change are important drivers of plant and bee decline. Monitoring of plants and bees is a crucial first step to safeguard their diversity and the services they provide but traditional in situ methods are time consuming and expensive. Remote sensing and Earth observation have the advantages that they can cover large areas and provides repeated, spatially continuous and standardized information. However, to date it has proven challenging to use these methods to assess small-scaled species-level biodiversity components with this approach. Here we surveyed bees and flowering plants using conventional field methods in 30 grasslands along a land-use intensity gradient in the Southeast of the Netherlands. We took RGB (true colored Red-Green–Blue) images using an Unmanned Aerial Vehicle (UAV) from the same fields and tested whether remote sensing can provide accurate assessments of flower cover and diversity and, by association, bee abundance and diversity. We explored the performance of different machine learning methods: Random Forest (RF), Neural Networks (NNET) and Support-Vector Machine (SVM). To evaluate the effect of the spatial resolution on the accuracy of the estimates, we tested all approaches using images at the original spatial resolution (∼ 0.5 cm) and re-sampled at 1 cm, 2 cm and 5 cm. We generally found significant relationships between UAV RGB derived estimates of flower cover and in situ estimates of flower cover and bee abundance and diversity. The highest resolution images generally resulted in the strongest relationships, with RF and NNET methods producing considerably better results than SVM methods (flower cover RF R2 = 0.8, NNET R2 = 0.79; bee abundance RF R2 = 0.65, NNET R2 = 0.54, bee species richness RF R2 = 0.62, NNET R2 = 0.52; bee species diversity RF R2 = 0.54, NNET R2 = 0.46). Our results suggest that methods based on the coupling of UAV imagery and machine learning methods can be developed into valuable tools for large-scale, standardized and cost-effective monitoring of flower cover and therefore of an important aspect of habitat quality for bees

    Under the mantra: 'Make use of colorblind friendly graphs'

    No full text
    Colorblindness is a genetic condition that affects a person's ability to accurately perceive colors. Several papers still exist making use of rainbow colors palette to show output. In such cases, for colorblind people such graphs are meaningless. In this paper we propose good practices and coding solutions developed in the R Free and OpenSource Software to (i) simulate colorblindness, (ii) develop colorblindfriendly color palettes and (iii) provide the tools for converting a non-colorblind friendly graph into a new image with improved colors

    Scientific maps should reach everyone: The cblindplot R package to let colour blind people visualise spatial patterns

    No full text
    Maps represent powerful tools to show the spatial variation of a variable in a straightforward manner. A crucial aspect in map rendering for its interpretation by users is the gamut of colours used for displaying data. One part of this problem is linked to the proportion of the human population that is colour blind and, therefore, highly sensitive to colour palette selection. The aim of this paper is to present the cblindplot R package and its founding function - cblind.plot() - which enables colour blind people to just enter an image in a coding workflow, simply set their colour blind deficiency type, and immediately get as output a colour blind friendly plot. We will first describe in detail colour blind problems, and then show a step by step example of the function being proposed. While examples exist to provide colour blind people with proper colour palettes, in such cases (i) the workflow include a separate import of the image and the application of a set of colour ramp palettes and (ii) albeit being well documented, there are many steps to be done before plotting an image with a colour blind friendly ramp palette. The function described in this paper, on the contrary, allows to (i) automatically call the image inside the function without any initial import step and (ii) explicitly refer to the colour blind deficiency type being experienced, to further automatically apply the proper colour ramp palette

    A quixotic view of spatial bias in modelling the distribution of species and their diversity

    Get PDF
    Ecological processes are often spatially and temporally structured, potentially leading to autocorrelation either in environmental variables or species distribution data. Because of that, spatially-biased in-situ samples or predictors might affect the outcomes of ecological models used to infer the geographic distribution of species and diversity. There is a vast heterogeneity of methods and approaches to assess and measure spatial bias; this paper aims at addressing the spatial component of data-driven biases in species distribution modelling, and to propose potential solutions to explicitly test and account for them. Our major goal is not to propose methods to remove spatial bias from the modelling procedure, which would be impossible without proper knowledge of all the processes generating it, but rather to propose alternatives to explore and handle it. In particular, we propose and describe three main strategies that may provide a fair account of spatial bias, namely: (i) how to represent spatial bias; (ii) how to simulate null models based on virtual species for testing biogeographical and species distribution hypotheses; and (iii) how to make use of spatial bias - in particular related to sampling effort - as a leverage instead of a hindrance in species distribution modelling. We link these strategies with good practice in accounting for spatial bias in species distribution modelling
    corecore