4 research outputs found

    Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.

    Get PDF
    Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates

    Early onset of neurological features differentiates two outbreaks of Lassa fever in Ebonyi state, Nigeria during 2017-2018.

    No full text
    Lassa fever (LF) is an acute viral haemorrhagic illness with various non-specific clinical manifestations. Neurological symptoms are rare at the early stage of the disease, but may be seen in late stages, in severely ill patients.The aim of this study was to describe the epidemiological evolution, socio-demographic profiles, clinical characteristics, and outcomes of patients seen during two Lassa fever outbreaks in Ebonyi State, between December 2017 and December 2018. Routinely collected clinical data from all patients admitted to the Virology Centre of the hospital during the period were analysed retrospectively. Out of a total of 83 cases, 70(84.3%) were RT-PCR confirmed while 13 (15.7%) were probable cases. Sixty-nine (83.1%) patients were seen in outbreak 1 of whom 53.6% were urban residents, while 19%, 15%, and 10% were farmers, students and health workers respectively. There were 14 (16.8%) patients, seen in second outbreak with 92.9% rural residents. There were differences in clinical symptoms, signs and laboratory findings between the two outbreaks. The case fatality rates were 29.9% in outbreak 1 and 85.7% for outbreak 2. Neurological features and abnormal laboratory test results were associated with higher mortality rate, seen in outbreak 2. This study revealed significant differences between the two outbreaks. Of particular concern was the higher case fatality during the outbreak 2 which may be from a more virulent strain of the Lassa virus. This has important public health implications and further molecular studies are needed to better define its characteristics

    Humoral and cellular immune responses to Lassa fever virus in Lassa fever survivors and their exposed contacts in Southern Nigeria.

    Get PDF
    Funder: National Institute of Allergy and Infectious DiseasesFunder: Science for Africa FoundationElucidating the adaptive immune characteristics of natural protection to Lassa fever (LF) is vital in designing and selecting optimal vaccine candidates. With rejuvenated interest in LF and a call for accelerated research on the Lassa virus (LASV) vaccine, there is a need to define the correlates of natural protective immune responses to LF. Here, we describe cellular and antibody immune responses present in survivors of LF (N = 370) and their exposed contacts (N = 170) in a LASV endemic region in Nigeria. Interestingly, our data showed comparable T cell and binding antibody responses from both survivors and their contacts, while neutralizing antibody responses were primarily seen in the LF survivors and not their contacts. Neutralizing antibody responses were found to be cross-reactive against all five lineages of LASV with a strong bias to Lineage II, the prevalent strain in southern Nigeria. We demonstrated that both T cell and antibody responses were not detectable in peripheral blood after a decade in LF survivors. Notably LF survivors maintained high levels of detectable binding antibody response for six months while their contacts did not. Lastly, as potential vaccine targets, we identified the regions of the LASV Glycoprotein (GP) and Nucleoprotein (NP) that induced the broadest peptide-specific T cell responses. Taken together this data informs immunological readouts and potential benchmarks for clinical trials evaluating LASV vaccine candidates

    The Origins and Future of Sentinel: An Early-Warning System for Pandemic Preemption and Response

    Get PDF
    While investigating a signal of adaptive evolution in humans at the gene LARGE, we encountered an intriguing finding by Dr. Stefan Kunz that the gene plays a critical role in Lassa virus binding and entry. This led us to pursue field work to test our hypothesis that natural selection acting on LARGE—detected in the Yoruba population of Nigeria—conferred resistance to Lassa Fever in some West African populations. As we delved further, we conjectured that the “emerging” nature of recently discovered diseases like Lassa fever is related to a newfound capacity for detection, rather than a novel viral presence, and that humans have in fact been exposed to the viruses that cause such diseases for much longer than previously suspected. Dr. Stefan Kunz’s critical efforts not only laid the groundwork for this discovery, but also inspired and catalyzed a series of events that birthed Sentinel, an ambitious and large-scale pandemic prevention effort in West Africa. Sentinel aims to detect and characterize deadly pathogens before they spread across the globe, through implementation of its three fundamental pillars: Detect, Connect, and Empower. More specifically, Sentinel is designed to detect known and novel infections rapidly, connect and share information in real time to identify emerging threats, and empower the public health community to improve pandemic preparedness and response anywhere in the world. We are proud to dedicate this work to Stefan Kunz, and eagerly invite new collaborators, experts, and others to join us in our efforts
    corecore