172 research outputs found
Photosystem I complexes form remarkably stable self-assembled tunneling junctions
This paper describes large-area molecular tunneling junctions comprising self-assembled monolayers (SAMs) of light-harvesting protein complexes using eutectic Ga-In (EGaIn) as a top contact. The complexes, which are readily isolable in large quantities from spinach leaves, self-assemble on top of SAMs of [6,6]-phenyl-C61-butyric acid (PCBA) on gold (Au) supported by mica substrates (Au Mica), which induces them to adopt a preferred orientation with respect to the electron transport chain that runs across the short axis of each complex, leading to temperature-independent rectification. We compared trimeric protein complexes isolated from thermophilic cyanobacteria to monomeric complexes extracted from spinach leaves by measuring charge-transport at variable temperatures and over the course of at least three months. Transport is independent of temperature in the range of 130 to 310 K for both protein complexes, affirming that the likely mechanism is non-resonant tunneling. The junctions rectified current and were stable for at least three months when stored at room temperature in ambient conditions, with the yield of working junctions falling from 100% to 97% over that time. These results demonstrate a straightforward strategy for forming remarkably robust molecular junctions, avoiding the fragility that is common in molecular electronics. </p
Large-Area Molecular Junctions:Synthesizing Integrated Circuits for Next-Generation Nonvolatile Memory
The development of high-speed, nonvolatile memory devices with low power consumption remains a significant challenge for next-generation computing. A recent study reported molecular switches operating at low voltages in large-area junctions by coupling supramolecular structural changes and counterion migration to bias-dependent redox, culminating in proof-of-concept memory comprising self-assembled monolayers
Quantum Yield Limits for the Detection of Single-Molecule Fluorescence Enhancement by a Gold Nanorod
Biological and Soft Matter Physic
In Operando Modulation of Rectification in Molecular Tunneling Junctions Comprising Reconfigurable Molecular Self-Assemblies
The reconfiguration of molecular tunneling junctions during operation via the self-assembly of bilayers of glycol ethers is described. Well-established functional groups are used to modulate the magnitude and direction of rectification in assembled tunneling junctions by exposing them to solutions containing different glycol ethers. Variable-temperature measurements confirm that rectification occurs by the expected bias-dependent tunneling-hopping mechanism for these functional groups and that glycol ethers, besides being an unusually efficient tunneling medium, behave similarly to alkanes. Memory bits are fabricated from crossbar junctions prepared by injecting eutectic Ga-In (EGaIn) into microfluidic channels. The states of two 8-bit registers were set by trains of droplets such that they are able to perform logical AND operations on bit strings encoded into chemical packets that alter the composition of the crossbar junctions through self-assembly to effect memristor-like properties. This proof-of-concept work demonstrates the potential for fieldable devices based on molecular tunneling junctions comprising self-assembled monolayers and bilayers
Conformation-driven quantum interference effects mediated by through-space conjugation in self-assembled monolayers
Tunnelling currents through tunnelling junctions comprising molecules with cross-conjugation are markedly lower than for their linearly conjugated analogues. This effect has been shown experimentally and theoretically to arise from destructive quantum interference, which is understood to be an intrinsic, electronic property of molecules. Here we show experimental evidence of conformation-driven interference effects by examining through-space conjugation in which π-conjugated fragments are arranged face-on or edge-on in sufficiently close proximity to interact through space. Observing these effects in the latter requires trapping molecules in a non-equilibrium conformation closely resembling the X-ray crystal structure, which we accomplish using self-assembled monolayers to construct bottom-up, large-area tunnelling junctions. In contrast, interference effects are completely absent in zero-bias simulations on the equilibrium, gas-phase conformation, establishing through-space conjugation as both of fundamental interest and as a potential tool for tuning tunnelling charge-transport in large-area, solid-state molecular-electronic devices.</p
Systematic experimental study of quantum interference effects in anthraquinoid molecular wires
In order to translate molecular properties in molecular-electronic devices, it is necessary to create design principles that can be used to achieve better structure-function control oriented toward device fabrication. In molecular tunneling junctions, cross-conjugation tends to give rise to destructive quantum interference effects that can be tuned by changing the electronic properties of the molecules. We performed a systematic study of the tunneling charge-transport properties of a series of compounds characterized by an identical cross-conjugated anthraquinoid molecular skeleton but bearing different substituents at the 9 and 10 positions that affect the energies and localization of their frontier orbitals. We compared the experimental results across three different experimental platforms in both single-molecule and large-area junctions and found a general agreement. Combined with theoretical models, these results separate the intrinsic properties of the molecules from platform-specific effects. This work is a step towards explicit synthetic control over tunneling charge transport targeted at specific functionality in (proto-) devices
Synthesis, Optical and Electrochemical Properties of High-Quality Cross-Conjugated Aromatic Polyketones
This paper describes the synthesis and characterization of three new aromatic polyketones with repeating units based on 2,2′-(2,5-dihexyl-1,4-phenylene) dithiophene (PTK), 2,2′-(9,9-dihexyl-9H-fluorene-2,7-diyl)dithiophene (PFTK), and 4,7-bis(3-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (PBTK). These polymers were obtained with a one-pot Suzuki-Miyaura cross-coupling-promoted homopolymerization to afford high-quality, defect-free polymers. Experimental and theoretical studies were applied to investigate their optical and electrical properties. The cross-conjugated nature of aromatic polyketones imparts excellent thermal stability. Exposure to acid converts the cross-conjugation to linear-conjugation, enabling the dynamic tuning of optoelectronic properties
Graphene oxide decorated with gold enables efficient biophotovolatic cells incorporating photosystem I
This paper describes the use of reduced graphene oxide decorated with gold nanoparticles as an efficient electron transfer layer for solid-state biophotovoltic cells containing photosystem I as the sole photo-active component. Together with polytyrosine–polyaniline as a hole transfer layer, this device architecture results in an open-circuit voltage of 0.3 V, a fill factor of 38% and a short-circuit current density of 5.6 mA cm(−2) demonstrating good coupling between photosystem I and the electrodes. The best-performing device reached an external power conversion efficiency of 0.64%, the highest for any solid-state photosystem I-based photovoltaic device that has been reported to date. Our results demonstrate that the functionality of photosystem I in the non-natural environment of solid-state biophotovoltaic cells can be improved through the modification of electrodes with efficient charge-transfer layers. The combination of reduced graphene oxide with gold nanoparticles caused tailoring of the electronic structure and alignment of the energy levels while also increasing electrical conductivity. The decoration of graphene electrodes with gold nanoparticles is a generalizable approach for enhancing charge-transfer across interfaces, particularly when adjusting the levels of the active layer is not feasible, as is the case for photosystem I and other biological molecules
Engineering the Thermoelectrical Properties of PEDOT:PSS by Alkali Metal Ion Effect
Engineering the electrical properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) holds great potential for various applications such as sensors, thermoelectric (TE) generators, and hole transport layers in solar cells. Various strategies have been applied to achieve optimal electrical properties, including base solution post-treatments. However, the working mechanism and the exact details of the structural transformations induced by base post-treatments are still unclear. In this work, we present a comparative study on the post-treatment effects of using three common and green alkali base solutions: namely LiOH, NaOH, and KOH. The structural modifications induced in the film by the base post-treatments are studied by techniques including atomic force microscopy, grazing-incidence wide-angle X-ray scattering, ultraviolet–visible–near-infrared spectroscopy, and attenuated total reflectance Fourier-transform infrared spectroscopy. Base-induced structural modifications are responsible for an improvement in the TE power factor of the films, which depends on the basic solution used. The results are explained on the basis of the different affinity between the alkali cations and the PSS chains, which determines PEDOT dedoping. The results presented here shed light on the structural reorganization occurring in PEDOT:PSS when exposed to high-pH solutions and may serve as inspiration to create future pH-/ion-responsive devices for various applications
Stabilizing cations in the backbones of conjugated polymers
We synthesized a cross-conjugated polymer containing ketones in the backbone and converted it to a linearly conjugated, cationic polyarylmethine via a process we call "spinless doping" to create a new class of materials, conjugated polyions. This process involves activating the ketones with a Lewis acid and converting them to trivalent cations via the nucleophilic addition of electron-rich aryl moieties. Spinless doping lowers the optical band gap from 3.26 to 1.55 eV while leaving the intrinsic semiconductor properties of the polymer intact. Electrochemical reduction (traditional doping) further decreases the predicted gap to 1.18 eV and introduces radicals to form positive polarons; here, n-doping produces a p-doped polymer in its metallic state. Treatment with a nucleophile (NaOMe) converts the cationic polymer to a neutral, non-conjugated state, allowing the band gap to be tuned chemically, postpolymerization. The synthesis of these materials is carried out entirely without the use of Sn or Pd and relies on scalable Friedel-Crafts chemistry
- …