71 research outputs found

    Exploiting Ligand-Protein Conjugates to Monitor Ligand-Receptor Interactions

    Get PDF
    We introduce three assays for analyzing ligand-receptor interactions based on the specific conjugation of ligands to SNAP-tag fusion proteins. Conjugation of ligands to different SNAP-tag fusions permits the validation of suspected interactions in cell extracts and fixed cells as well as the establishment of high-throughput assays. The different assays allow the analysis of strong and weak interactions. Conversion of ligands into SNAP-tag substrates thus provides access to a powerful toolbox for the analysis of their interactions with proteins

    In quest of a systematic framework for unifying and defining nanoscience

    Get PDF
    This article proposes a systematic framework for unifying and defining nanoscience based on historic first principles and step logic that led to a “central paradigm” (i.e., unifying framework) for traditional elemental/small-molecule chemistry. As such, a Nanomaterials classification roadmap is proposed, which divides all nanomatter into Category I: discrete, well-defined and Category II: statistical, undefined nanoparticles. We consider only Category I, well-defined nanoparticles which are >90% monodisperse as a function of Critical Nanoscale Design Parameters (CNDPs) defined according to: (a) size, (b) shape, (c) surface chemistry, (d) flexibility, and (e) elemental composition. Classified as either hard (H) (i.e., inorganic-based) or soft (S) (i.e., organic-based) categories, these nanoparticles were found to manifest pervasive atom mimicry features that included: (1) a dominance of zero-dimensional (0D) core–shell nanoarchitectures, (2) the ability to self-assemble or chemically bond as discrete, quantized nanounits, and (3) exhibited well-defined nanoscale valencies and stoichiometries reminiscent of atom-based elements. These discrete nanoparticle categories are referred to as hard or soft particle nanoelements. Many examples describing chemical bonding/assembly of these nanoelements have been reported in the literature. We refer to these hard:hard (H-n:H-n), soft:soft (S-n:S-n), or hard:soft (H-n:S-n) nanoelement combinations as nanocompounds. Due to their quantized features, many nanoelement and nanocompound categories are reported to exhibit well-defined nanoperiodic property patterns. These periodic property patterns are dependent on their quantized nanofeatures (CNDPs) and dramatically influence intrinsic physicochemical properties (i.e., melting points, reactivity/self-assembly, sterics, and nanoencapsulation), as well as important functional/performance properties (i.e., magnetic, photonic, electronic, and toxicologic properties). We propose this perspective as a modest first step toward more clearly defining synthetic nanochemistry as well as providing a systematic framework for unifying nanoscience. With further progress, one should anticipate the evolution of future nanoperiodic table(s) suitable for predicting important risk/benefit boundaries in the field of nanoscience

    Fluorescent Labeling of SNAP-Tagged Proteins in Cells

    Get PDF
    One of the most prominent self-labeling tags is SNAP-tag. It is an in vitro evolution product of the human DNA repair protein O6 -alkylguanine-DNA alkyltransferase (hAGT) that reacts specifically with benzylguanine (BG) and benzylchloropyrimidine (CP) derivatives, leading to covalent labeling of SNAP-tag with a synthetic probe (Gronemeyer et al., Protein Eng Des Sel 19:309–316, 2006; Curr Opin Biotechnol 16:453–458, 2005; Keppler et al., Nat Biotechnol 21:86–89, 2003; Proc Natl Acad Sci U S A 101:9955– 9959, 2004). SNAP-tag is well suited for the analysis and quantification of fused target protein using fluorescence microscopy techniques. It provides a simple, robust, and versatile approach to the imaging of fusion proteins under a wide range of experimental conditions. © Springer Science+Business Media New York 2015

    Photographic phase holograms: spatial frequency effects with conventional and reversal bleaches

    No full text
    This article does not have an abstract

    Bleached reflection holograms: a study of color shifts due to processing

    No full text
    This article does not have an abstract

    Photographic phase holograms: the influence of developer composition on scattering and diffraction efficiency

    No full text
    Photographic phase holograms processed with a conventional bleach after fixing usually have higher diffraction efficiencies than those processed without fixing using a reversal bleach, but exhibit much higher levels of scattering. Experimental results with the two types of bleach are presented which show how scattering and diffraction efficiency are influenced by the composition of the developer. Two processes associated with development, namely, solution physical development and local hardening of the gelatin, are identified as being primarily responsible for the effects observed

    Rehalogenating bleaches for photographic phase holograms. 2: Spatial frequency effects

    No full text
    The use of a rehalogenating bleach without fixing to produce photographic phase holograms has the advantage that emulsion shrinkage is minimized. Experimental results are presented which show that the diffraction efficiency obtained with such bleaches varies considerably with the spacing of the hologram fringes. These results throw additional light on the mode of operation of rehalogenating bleaches and lead to an estimate of the diffusion length of the silver ion in the bleach bath
    corecore