43 research outputs found

    Modelling and Analysis of Tool Wear on a Cryogenically Treated CNMG120408SMRH13A Insert in the Turning of AISI4340 Steel Using Response Surface Methodology

    Get PDF
    The aim of this study is the modelling and analysis of tool wear on cryogenically treated CNMG120408SMRH13A inserts. Cryogenic treatment is carried out at -196°C for 48 hours, followed by tempering at 200°C for 2 hours. The AISI4340 steel is machined with cryogenically treated inserts by the turning process. Parameters, namely cutting speed, feed rate, and depth of cut, are selected as the input parameters at three levels. The flank and the crater wear are considered as output responses. The Scanning Electron Microscope (SEM) and X-Ray Diffraction analyses (XRD) confirm the formation of η-phase carbides on the treated surfaces. It is found that the results obtained from this model are sufficiently accurate for the prediction of tool wear. A good correlation is shown between the theoretical predictions and the experimental data. Direct and interaction effects of process parameters on the responses are studied by plotting graphs. As a result, it is found that cryogenically treated inserts have superior tool wear resistance, which has been confirmed by conducting confirmation tests

    Line Balancing Analysis Of Tuner Product Manufacturing

    Get PDF
    The processing time and the number of operators have strong relationship with the productivity of production lines. In the tuner production line, three significant factors related to productivity through using of line balancing method are the number of operator, production tools/equipment, and production process. This study performed the line balancing method through simulation model in order to reduce the line unbalancing causes and relocate the workforce associated to idle time, eliminating the bottleneck, and at the same time maintaining/ improving the productivity. To analyze the production line, we use a develop simulation tool, called Fact-Model, to modeling the production line (with the graph of critical path network and working time) and the works estimated (related to the cycle time, takt time, non-value added activities, quantity, and cost). Fact-Model is facilitated with the features that enable the user to depict the real production flows by using their owned real pictures/photos taken into their simulation model

    Effect of cryogenic grinding on fatigue life of additively manufactured maraging steel

    Get PDF
    Additive manufacturing (AM) is replacing conventional manufacturing techniques due to its ability to manufacture complex structures with near-net shape and reduced material wastage. However, the poor surface integrity of the AM parts deteriorates the service life of the components. The AM parts should be subjected to post-processing treatment for improving surface integrity and fatigue life. In this research, maraging steel is printed using direct metal laser sintering (DMLS) process and the influence of grinding on the fatigue life of this additively manufactured material was investigated. For this purpose, the grinding experiments were performed under two different grinding environments such as dry and cryogenic conditions using a cubic boron nitride (CBN) grinding wheel. The results revealed that surface roughness could be reduced by about 87% under cryogenic condition over dry grinding. The fatigue tests carried out on the additive manufactured materials exposed a substantial increase of about 170% in their fatigue life when subjected to cryogenic grinding

    A Novel Approach for Groundwater Budgeting Using GIS in a Part of Pondicherry Region, India

    Get PDF
    The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Pondicherry is one such region with recent alluvium as the major formation. Since the study area forms a part of the coastal aquifer system this behaves as a fragile ecosystem. The present study has been attempted to calculate the extraction of water and to estimate the amount of recharge into this allu-vial aquifer by using groundwater level variations. The monthly water level fluctuation was observed during the study period (2000-2002) in eighteen locations. The maximum rise in groundwater level observed during 2000 was considered as the initial water level for the study and the subsequent decline in water level (draw down) was monitored monthly until the rising trend was noted. This indicates the fall in water level due to extraction.Later keeping the deepest draw down as the initial value increasing water level trend was studied until there was a notice of decline in groundwater level. This indicates as the rise in water level due to re-charge. This method of observation carried out at a single location was adopted for all eighteen locations. The spatial representation of these data for eighteen locations were carried out by using GIS and the area occupied by different groundwater level contours were calculated and the amount of water withdrawn/re- charged was estimated. The maximum recharge was noted in the central and the northern part of the study area when compared to the other regions. Similarly, the maximum discharge was noted in the northern and the southern part of the study area during the study period

    4D printing of smart polymer nanocomposites: integrating graphene and acrylate based shape memory polymers

    Get PDF
    The ever-increasing demand for materials to have superior properties and satisfy functions in the field of soft robotics and beyond has resulted in the advent of the new field of four-dimensional (4D) printing. The ability of these materials to respond to various stimuli inspires novel applications and opens several research possibilities. In this work, we report on the 4D printing of one such Shape Memory Polymer (SMP) tBA-co-DEGDA (tert-Butyl Acrylate with diethylene glycol diacrylate). The novelty lies in establishing the relationship between the various characteristic properties (tensile stress, surface roughness, recovery time, strain fixity, and glass transition temperature) concerning the fact that the print parameters of the laser pulse frequency and print speed are governed in the micro-stereolithography (Micro SLA) method. It is found that the sample printed with a speed of 90 mm/s and 110 pulses/s possessed the best batch of properties, with shape fixity percentages of about 86.3% and recovery times as low as 6.95 s. The samples built using the optimal parameters are further subjected to the addition of graphene nanoparticles, which further enhances all the mechanical and surface properties. It has been observed that the addition of 0.3 wt.% of graphene nanoparticles provides the best results

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    This online publication has been corrected. The corrected version first appeared at thelancet.com on September 28, 2023BACKGROUND : Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. METHODS : Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. FINDINGS : In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. INTERPRETATION : Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.Bill & Melinda Gates Foundation.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein

    Smart ceramic materials for homogeneous combustion in internal combustion engines: A review

    No full text
    The advantages of using ceramics in advanced heat engines include increased fuel efficiency due to higher engine operating temperatures, more compact designs with lower capacity cooling system. Future internal combustion engines will be characterized by near zero emission level along with low specific fuel consumption. Homogenous combustion which realized inside the engine cylinder has the potential of providing near zero emission level with better fuel economy. However, the accomplishment of homogeneous combustion depends on the air flow structure inside the combustion chamber, fuel injection conditions and turbulence as well as ignition conditions. Various methods and procedures are being adopted to establish the homogeneous combustion inside the engine cylinder. In recent days, porous ceramic materials are being introduced inside the combustion chamber to achieve the homogeneous combustion. This paper investigates the desirable structures, types, and properties of such porous ceramic materials and their positive influence on the combustion process

    Analysis and experimental investigation of powder concentration and stirring velocity on powder mixed electrical discharge machining performance with 3D printed electrodes

    No full text
    In this work, CuO mixed lemon peel dielectric is used along with the 3D printed aluminium electrodes to enhance the electrical discharge machining (EDM) performance. This work mainly focuses on improving the surface quality by optimizing the powder concentration and stirring velocity. A full factorial of 27 experiments is carried out with input parameters such as pulse off time with 3 levels (28, 58 and 98 μs), powder concentration with 3 levels (1, 2 and 3 g/L) and stirring velocity with 3 levels (900, 1800 and 2700 rpm), while keeping the current, pulse on and voltage as constant. For all trials, the output responses viz. surface roughness (SR) and material removal rate (MRR) are noted. It is evidenced that EDM performance is influenced by the stability of powder mixed dielectric. To understand the most influential input parameter and its level, analysis of variance (ANOVA) and grey relational analysis (GRA) are carried out. The output analysis exhibited that powder concentration of 2 g/L, stirring velocity of 1800 rpm and pulse off time of 28 μs as the best combination for the best quality of finish (4.72 μm) with high MRR (0.0035 g/min) than the 1 g/L PC with 900 rpm SV for the best quality finish (5.87 μm) along high MRR (0.0029 g/min) and 3 g/L PC with 2700 rpm SV for the best quality finish (5.38 μm) with high MRR (0.0030 g/min) having pulse off time of 28 μs. The experimental findings are validated with a 3D surface plot and SEM images taken on the machined surface. Also, a simulation model is built to understand the flow velocity profiles. This helps ensure the minimum stirring velocity to be maintained to enhance the stability of powder mixed dielectric
    corecore