41 research outputs found

    Visualizing Causality in Mixed Reality for Manual Task Learning: An Exploratory Study

    Full text link
    Mixed Reality (MR) is gaining prominence in manual task skill learning due to its in-situ, embodied, and immersive experience. To teach manual tasks, current methodologies break the task into hierarchies (tasks into subtasks) and visualize the current subtask and future in terms of causality. Existing psychology literature also shows that humans learn tasks by breaking them into hierarchies. In order to understand the design space of information visualized to the learner for better task understanding, we conducted a user study with 48 users. The study was conducted using a complex assembly task, which involves learning of both actions and tool usage. We aim to explore the effect of visualization of causality in the hierarchy for manual task learning in MR by four options: no causality, event level causality, interaction level causality, and gesture level causality. The results show that the user understands and performs best when all the level of causality is shown to the user. Based on the results, we further provide design recommendations and in-depth discussions for future manual task learning systems

    Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review

    Get PDF
    Severe cases of COVID-19 are characterized by hyperinflammation induced by cytokine storm, ARDS leading to multiorgan failure and death. JAK-STAT signaling has been implicated in immunopathogenesis of COVID-19 infection under different stages such as viral entry, escaping innate immunity, replication, and subsequent inflammatory processes. Prompted by this fact and prior utilization as an immunomodulatory agent for several autoimmune, allergic, and inflammatory conditions, Jakinibs have been recognized as validated small molecules targeting the rapid release of proinflammatory cytokines, primarily IL-6, and GM-CSF. Various clinical trials are under investigation to evaluate Jakinibs as potential candidates for treating COVID-19. Till date, there is only one small molecule Jakinib known as baricitinib has received FDA-approval as a standalone immunomodulatory agent in treating critical COVID-19 patients. Though various meta-analyses have confirmed and validated the safety and efficacy of Jakinibs, further studies are required to understand the elaborated pathogenesis of COVID-19, duration of Jakinib treatment, and assess the combination therapeutic strategies. In this review, we highlighted JAK-STAT signalling in the pathogenesis of COVID-19 and clinically approved Jakinibs. Moreover, this review described substantially the promising use of Jakinibs and discussed their limitations in the context of COVID-19 therapy. Hence, this review article provides a concise, yet significant insight into the therapeutic implications of Jakinibs as potential anti-COVID agents which opens up a new horizon in the treatment of COVID-19, effectively

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Exploration Of Codeless In-situ Extended Reality Authoring Environment For Asynchronous Immersive Spatial Instructions

    No full text
    Immersive reality technology, such as augmented and virtual reality, has recently become quite prevalent due to innovation in hardware and software, leading to cheaper devices such as Head-mounted displays. There is significant evidence of an improved rate of skill acquisition with immersive reality training. However, the knowledge required to develop content for such immersive media is still relatively high. Subject experts often work together with programmers to create such content.  Our research goal in this thesis can be broadly classified into four distinct but mutually dependent categories. First, we explored the problem of immersive content creation with ProcessAR, an AR-based system to develop 2D/3D content that captures subject matter experts (SMEs) environment-object interactions in situ. The design space for ProcessAR was identified from formative interviews with AR programming experts and SMEs, alongside a comparative design study with SMEs and novice users. To enable smooth workflows, ProcessAR locates and identifies different tools/objects through computer vision within the workspace when the author looks at them. We explored additional features, such as embedding 2D videos with detected objects and user-adaptive triggers. A final user evaluation comparing ProcessAR and a baseline AR authoring environment showed that, according to our qualitative questionnaire, users preferred ProcessAR. Second, we explored a unified authoring and editing environment, EditAR, that can create content for multiple media, such as AR, VR, and video instructions, based on a single demonstration. EditAR captures the user's interaction within an environment and creates a digital twin, enabling users without programming backgrounds to develop content. We conducted formative interviews with the subject and media experts to design the system. The prototype was developed and reviewed by experts. We also performed a user study comparing traditional video creation with 2D video creation from 3D recordings via a 3D editor, which uses freehand interaction for in-headset editing. Users took five times less time to record instructions and preferred EditAR, giving significantly higher usability scores. We then explore AnnotateXR, an extended reality (XR) workflow to collect various high fidelity data and auto-annotate it in a single demonstration. AnnotateXR allows users to align virtual models over physical objects, tracked with 6DoF sensors. AnnotateXR utilizes a hand tracking capable XR HMD coupled with 6DoF information and collision detection to enable algorithmic segmentation of different actions in videos through its digital twin. The virtual-physical mapping provides a tight bounding volume to generate semantic segmentation masks for the captured image data. Alongside supporting object and action segmentation, we also support other dimensions of annotation required by modern CV, such as Human-Object, Object-Object, and rich 3D recordings, all with a single demonstration. Our user study shows AnnotateXR produced over 112,000 annotated data points in 67 minutes while maintaining the same performance quality as manual annotations. Lastly, We conducted two elicitation studies empirically evaluated to determine design guidance for cross-modal devices capable of supporting an immersive interface in VR, allowing for simultaneous interaction with direct hand interaction while allowing for keyboard and mouse input. Recent advances in hand tracking have allowed users to interact with and experience interactions closer and similar to interactions in the physical world. However, these added benefits of natural interaction come at the cost of precision and accuracy offered by legacy input media such as a keyboard/mouse. The results and the guidelines from the two studies were used to develop a prototype called the Immersive Keyboard, which was evaluated against only traditional interface of only the keyboard and mouse.  In this thesis, we have explored a novel extended reality authoring environment that enables users without programming to author asynchronous immersive content in-situ, especially for spatial instructions.</p

    Ruthenium-Catalyzed α‑Olefination of Nitriles Using Secondary Alcohols

    No full text
    Ruthenium­(II) pincer-catalyzed α-olefination of nitriles is reported. This simple protocol provides a transformation for the catalytic synthesis of β-disubstituted vinyl nitriles using secondary alcohols. This catalytic method has an extensive substrate scope, as arylmethyl nitriles, heteroarylmethyl nitriles, and aliphatic nitriles as well as cyclic, acyclic, symmetrical, and unsymmetrical secondary alcohols are all employed in the reaction to provide diverse α-vinyl nitriles. CC bond formation proceeds through activation of the O–H bond of secondary alcohols via an unsaturated 16-electron intermediate ruthenium pincer complex and further condensation of in situ-formed ketones with nitriles. Remarkably, H<sub>2</sub> and H<sub>2</sub>O are the only byproducts of this method
    corecore