22 research outputs found

    A Uniform Confidence Phenomenon in Deep Learning and its Implications for Calibration

    Full text link
    Despite the impressive generalization capabilities of deep neural networks, they have been repeatedly shown to poorly estimate their predictive uncertainty - in other words, they are frequently overconfident when they are wrong. Fixing this issue is known as model calibration, and has consequently received much attention in the form of modified training schemes and post-training calibration procedures. In this work, we present a significant hurdle to the calibration of modern models: deep neural networks have large neighborhoods of almost certain confidence around their training points. We demonstrate in our experiments that this phenomenon consistently arises (in the context of image classification) across many model and dataset pairs. Furthermore, we prove that when this phenomenon holds, for a large class of data distributions with overlaps between classes, it is not possible to obtain a model that is asymptotically better than random (with respect to calibration) even after applying the standard post-training calibration technique of temperature scaling. On the other hand, we also prove that it is possible to circumvent this defect by changing the training process to use a modified loss based on the Mixup data augmentation technique.Comment: 23 pages, 13 Figure

    Provably Learning Diverse Features in Multi-View Data with Midpoint Mixup

    Full text link
    Mixup is a data augmentation technique that relies on training using random convex combinations of data points and their labels. In recent years, Mixup has become a standard primitive used in the training of state-of-the-art image classification models due to its demonstrated benefits over empirical risk minimization with regards to generalization and robustness. In this work, we try to explain some of this success from a feature learning perspective. We focus our attention on classification problems in which each class may have multiple associated features (or views) that can be used to predict the class correctly. Our main theoretical results demonstrate that, for a non-trivial class of data distributions with two features per class, training a 2-layer convolutional network using empirical risk minimization can lead to learning only one feature for almost all classes while training with a specific instantiation of Mixup succeeds in learning both features for every class. We also show empirically that these theoretical insights extend to the practical settings of image benchmarks modified to have multiple features.Comment: 37 pages, 2 figures, ICML 202

    Hiding Data Helps: On the Benefits of Masking for Sparse Coding

    Full text link
    Sparse coding, which refers to modeling a signal as sparse linear combinations of the elements of a learned dictionary, has proven to be a successful (and interpretable) approach in applications such as signal processing, computer vision, and medical imaging. While this success has spurred much work on provable guarantees for dictionary recovery when the learned dictionary is the same size as the ground-truth dictionary, work on the setting where the learned dictionary is larger (or over-realized) with respect to the ground truth is comparatively nascent. Existing theoretical results in this setting have been constrained to the case of noise-less data. We show in this work that, in the presence of noise, minimizing the standard dictionary learning objective can fail to recover the elements of the ground-truth dictionary in the over-realized regime, regardless of the magnitude of the signal in the data-generating process. Furthermore, drawing from the growing body of work on self-supervised learning, we propose a novel masking objective for which recovering the ground-truth dictionary is in fact optimal as the signal increases for a large class of data-generating processes. We corroborate our theoretical results with experiments across several parameter regimes showing that our proposed objective also enjoys better empirical performance than the standard reconstruction objective.Comment: 16 pages, 1 figure, ICML 202

    Cotton in the new millennium: advances, economics, perceptions and problems

    Get PDF
    Cotton is the most significant natural fibre and has been a preferred choice of the textile industry and consumers since the industrial revolution began. The share of man-made fibres, both regenerated and synthetic fibres, has grown considerably in recent times but cotton production has also been on the rise and accounts for about half of the fibres used for apparel and textile goods. To cotton’s advantage, the premium attached to the presence of cotton fibre and the general positive consumer perception is well established, however, compared to commodity man-made fibres and high performance fibres, cotton has limitations in terms of its mechanical properties but can help to overcome moisture management issues that arise with performance apparel during active wear. This issue of Textile Progress aims to: i. Report on advances in cotton cultivation and processing as well as improvements to conventional cotton cultivation and ginning. The processing of cotton in the textile industry from fibre to finished fabric, cotton and its blends, and their applications in technical textiles are also covered. ii. Explore the economic impact of cotton in different parts of the world including an overview of global cotton trade. iii. Examine the environmental perception of cotton fibre and efforts in organic and genetically-modified (GM) cotton production. The topic of naturally-coloured cotton, post-consumer waste is covered and the environmental impacts of cotton cultivation and processing are discussed. Hazardous effects of cultivation, such as the extensive use of pesticides, insecticides and irrigation with fresh water, and consequences of the use of GM cotton and cotton fibres in general on the climate are summarised and the effects of cotton processing on workers are addressed. The potential hazards during cotton cultivation, processing and use are also included. iv. Examine how the properties of cotton textiles can be enhanced, for example, by improving wrinkle recovery and reducing the flammability of cotton fibre

    Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy

    Full text link

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    A prospective cohort study on glucose variability and clinical outcomes in comatose children due to acute central nervous system infections admitted in the pediatric intensive care unit

    No full text
    Background: Pediatric acute central nervous system (CNS) infections are associated with severe neuromorbidity. This study aimed to study the effect of glucose variability on clinical outcomes in comatose children due to acute CNS infections admitted in pediatric intensive care unit (PICU). Subjects and Methods: A prospective cohort study enrolled comatose children aged 1 month to 12 years due to acute CNS infection. Within 6 h, continuous glucose monitoring was started (Freestyle Libre Pro, Abbott). The unit practice was targeting blood glucose (BG, mg/dL) of 126, >140, >180, >200, and 126). The primary outcome was new-onset organ dysfunction. The secondary outcomes were organ support, length of mechanical ventilation, hospital (including PICU) stay, and 90-day composite poor outcome (mortality or severe neurodisability). Results: Total BG values measured were 27,792 from 66 patients (mean [standard deviation (SD)] 421.1 [212.6] values per patient). The mean (SD) BG was 103.2 (37.7) (minimum: 42.1; maximum: 228.8). The new-onset organ dysfunction has occurred in 83.3% (n = 55/66), and no difference was noted among normoglycemic and abnormal glycemic groups (84.4% vs. 80.9%; relative risk = 1.09, 95% confidence interval: 0.67–1.76). The median (interquartile range) PICU stay (days) was higher in the normoglycemic group (7, 5–14 vs. 4, 3.5–8.5; P = 0.014). No difference was noted in other outcomes. Conclusions: Glucose variability was not significantly associated with new-onset organ dysfunction and poor outcome in comatose children due to acute CNS infections

    Neuroprotective effect of Demethoxycurcumin, a natural derivative of Curcumin on rotenone induced neurotoxicity in SH-SY 5Y Neuroblastoma cells

    No full text
    Abstract Background Mitochondrial dysfunction and oxidative stress are the main toxic events leading to dopaminergic neuronal death in Parkinson’s disease (PD) and identified as vital objective for therapeutic intercession. This study investigated the neuro-protective effects of the demethoxycurcumin (DMC), a derivative of curcumin against rotenone induced neurotoxicity. Methods SH-SY5Y neuroblastoma cells are divided into four experimental groups: untreated cells, cells incubated with rotenone (100 nM), cells treated with DMC (50 nM) + rotenone (100 nM) and DMC alone treated. 24 h after treatment with rotenone and 28 h after treatment with DMC, cell viability was assessed using the MTT assay, and levels of ROS and MMP, plus expression of apoptotic protein were analysed. Results Rotenone induced cell death in SH-SY5Y cells was significantly reduced by DMC pretreatment in a dose-dependent manner, indicating the potent neuroprotective effects of DMC. Rotenone treatment significantly increases the levels of ROS, loss of MMP, release of Cyt-c and expression of pro-apoptotic markers and decreases the expression of anti-apoptotic markers. Conclusions Even though the results of the present study indicated that the DMC may serve as a potent therapeutic agent particularly for the treatment of neurodegenerative diseases like PD, further pre-clinical and clinical studies are required
    corecore