6 research outputs found

    Cooperativity Scale: A Structure–Mechanism Correlation in the Self-Assembly of Benzene-1,3,5-tricarboxamides

    Get PDF
    ConspectusThe self-assembly of small and well-defined molecules using noncovalent interactions to generate various nano- and microarchitectures has been extensively studied. Among various architectures, one-dimensional (1-D) nano-objects have garnered significant attention. It has become increasingly evident that a cooperative or nucleation–elongation mechanism of polymerization leads to highly ordered 1-D supramolecular polymers, analogous to shape-persistent biopolymers such as actin. With this in mind, achieving cooperativity in self-assembled structures has been actively pursued with significant success. Only recently, researchers are focusing on the origin of the mechanism at the molecular level in different synthetic systems. Taking a step further, a thorough quantitative structure–mechanism correlation is crucial to control the size, shape, and functions of supramolecular polymers, and this is currently lacking in the literature.Among a plethora of molecules, benzene-1,3,5-tricarboxamides (BTAs) provide a unique combination of important noncovalent interactions such as hydrogen bonding, π-stacking, and hydrophobic interactions, for self-assembly and synthetic ease. Due to the latter, a diverse range of BTA derivatives with all possible structural mutations have been synthesized and studied during the past decade, mainly from our group. With such a large body of experimental results on BTA self-assembly, it is time to embark on a structure–mechanism correlation in this family of molecules, and a first step toward this will form the main focus of this Account. The origin of the cooperative mechanism of self-assembly in BTAs has been ascribed to 3-fold intermolecular hydrogen bonding (HB) between monomers based on density-functional theory (DFT) calculations. The intermolecular hydrogen-bonding interaction forms the central premise of this work, in which we evaluate the effect of different moieties such as alkyl chains, and amino acids, attached to the core amides on the strength of intermolecular HB, which consequently governs the extent of cooperativity (quantified by the cooperativity factor, σ). In addition to this, we evaluate the effect of amide connectivity (C- vs N-centered), the role of solvents, amides vs thioamides, and finally the influence of the benzene vs cyclohexane core on the σ. Remarkably, every subtle structural change in the BTA monomer seems to affect the cooperativity factor in a systematic and rationalizable way.The take home message will be that the cooperativity factor (σ) in the BTA family forms a continuous spectrum from 1 (isodesmic) to <10<sup>–6</sup> (highly cooperative) and it can be tuned based on the appropriate modification of the BTA monomer. We anticipate that these correlations drawn from the BTA series will be applicable to other systems in which HB is the main driving force for cooperativity. Thus, the understanding gained from such correlations on a prototypical self-assembling motif such as BTA will aid in designing more complex systems with distinct functions

    Amplifying Chiroptical Properties of Conjugated Polymer Thin-Film Using an Achiral Additive

    Get PDF
    Chiral conjugated polymers bearing enantiopure side chains offer the possibility to harness the effect of chirality in organic electronic devices. However, its use is hampered by the low degree of circular polarization in absorption (<i>g</i><sub>abs</sub>) in most of the conjugated polymer thin-films studied. Here we demonstrate a versatile method to significantly increase the <i>g</i><sub>abs</sub> by using a few weight percentages of a commercially available achiral long-chain alcohol as an additive. This additive enhances the chiroptical properties in both absorption and emission by ca. 5–10 times in the thin-films. We envisage that the alcohol additive acts as a plasticizer which enhances the long-range chiral liquid crystalline ordering of the polymer chains, thereby amplifying the chiroptical properties in the thin-film. The application of this methodology to various conjugated polymers has been demonstrated

    Dipole-Moment-Driven Cooperative Supramolecular Polymerization

    No full text
    While the mechanism of self-assembly of π-conjugated molecules has been well studied to gain control over the structure and functionality of supramolecular polymers, the intermolecular interactions underpinning it are poorly understood. Here, we study the mechanism of self-assembly of perylene bisimide derivatives possessing dipolar carbonate groups as linkers. It was observed that the combination of carbonate linkers and cholesterol/dihydrocholesterol self-assembling moieties led to a cooperative mechanism of self-assembly. Atomistic molecular dynamics simulations of an assembly in explicit solvent strongly suggest that the dipole–dipole interaction between the carbonate groups imparts a macro-dipolar character to the assembly. This is confirmed experimentally through the observation of a significant polarization in the bulk phase for molecules following a cooperative mechanism. The cooperativity is attributed to the presence of dipole–dipole interaction in the assembly. Thus, anisotropic long-range intermolecular interactions such as dipole–dipole interaction can serve as a way to obtain cooperative self-assembly and aid in rationalizing and predicting the mechanisms in various synthetic supramolecular polymers

    Solvent Clathrate Driven Dynamic Stereomutation of a Supramolecular Polymer with Molecular Pockets

    No full text
    Control over the helical organization of synthetic supramolecular systems is intensively pursued to manifest chirality in a wide range of applications ranging from electron spin filters to artificial enzymes. Typically, switching the helicity of supramolecular assemblies involves external stimuli or kinetic traps. However, efforts to achieve helix reversal under thermodynamic control and to understand the phenomena at a molecular level are scarce. Here we present a unique example of helix reversal (stereomutation) under thermodynamic control in the self-assembly of a coronene bisimide that has a 3,5-dialkoxy substitution on the imide phenyl groups (<b>CBI-35CH</b>), leading to “molecular pockets” in the assembly. The stereomutation was observed only if the CBI monomer possesses molecular pockets. Detailed chiroptical studies performed in alkane solvents with different molecular structures reveal that solvent molecules intercalate or form clathrates within the molecular pockets of <b>CBI-35CH</b> at low temperature (263 K), thereby triggering the stereomutation. The interplay among the helical assembly, molecular pockets, and solvent molecules is further unraveled by explicit solvent molecular dynamics simulations. Our results demonstrate how the molecular design of self-assembling building blocks can orchestrate the organization of surrounding solvent molecules, which in turn dictates the helical organization of the resulting supramolecular assembly

    High Circular Polarization of Electroluminescence Achieved <i>via</i> Self-Assembly of a Light-Emitting Chiral Conjugated Polymer into Multidomain Cholesteric Films

    No full text
    We demonstrate a facile route to obtain high and broad-band circular polarization of electroluminescence in single-layer polymer OLEDs. As a light-emitting material we use a donor–acceptor polyfluorene with enantiomerically pure chiral side-chains. We show that upon thermal annealing the polymer self-assembles into a multidomain cholesteric film. By varying the thickness of the polymer emitting layer, we achieve high levels of circular polarization of electroluminescence (up to 40% excess of right-handed polarization), which are the highest reported for polymer OLEDs not using chiral dopants or alignment layers. Mueller matrix ellipsometry shows strong optical anisotropies in the film, indicating that the circular polarization of luminescence arises mainly after the photon has been generated, through selective scattering and birefringence correlated in the direction of the initial linear polarization of the photon. Our work demonstrates that chirally substituted conjugated polymers can combine photonic and semiconducting properties in advanced optoelectronic devices
    corecore