5 research outputs found

    Influence of the use of Renewable Compatibility Agent Wood Plastic Composite (WPC)

    Get PDF
    The growing interest in using recycled and natural materials in the application of new composites in recent years implies ecological, economic and versatility benefits. Wood plastic composite (WPC) are considered very attractive materials, as they allow the use of polymers of recycled or virgin origin, associated with forestry by-products. The present work aims to investigate the influence on the mechanical, thermal and morphological resistance of WPC, using oleic acid and glycerol as renewable coupling agents. Composites were also prepared with a commercial compatibility agent in its formulation - maleic anhydride grafted polypropylene (MAPP) - under the same conditions. The composites were prepared in a single-screw extruder, with fixed contents of 5% sawdust with 95% virgin polymer, of this total, 2% were coupling agents: MAPP, oleic acid or glycerol, according to the desired composition. To be evaluated as changes in mechanical properties, tensile and impact strength tests were performed on specimens obtained through the injection molding process. The fracture surfaces of specimens tested in tensile tests were examined using images generated by scanning electron microscopy. The thermal stability of the composites was also investigated by thermogravimetric analysis. The use of glycerol and oleic acid improved the mechanical properties of the composite. An increase in tensile strength is observed when glycerol is added in composite. As for impact strength, the addition of glycerol or oleic acid was around 58% higher in impact strength when compared to without coupling agent. Glycerol and oleic acid are renewable, low-cost alternative to be a potential substitute for the commercial coupling agent MAPP, especially when the main requirement is to obtain better impact resistance properties

    Steam Explosion of <i>Eucalyptus grandis</i> Sawdust for Ethanol Production within a Biorefinery Approach

    No full text
    In this work, Eucalyptus grandis sawdust was subjected to steam explosion as the first step in cellulosic ethanol production within a biorefinery approach. The effect of the moisture content in the eucalypt sawdust (8 and 50%) and pretreatment process variables, such as temperature and residence time, were evaluated along with the influence of the water washing of steam-exploded solids on enzymatic hydrolysis and C6 fermentation yields. All other process streams were characterized to evaluate the recovery yield of valuable co-products. A recovery of nearly 100% glucans in the solid fraction and 60% xylans in the liquid fraction, mainly as partially acetylated oligomers, was obtained. The best enzymatic hydrolysis efficiencies (66–67%) were achieved after pretreatment at 205 °C for 10 min. The washing of pretreated sawdust with water improved the hydrolysis efficiencies and ethanol production yields by 10% compared to the unwashed pretreated solids under the same experimental condition. The highest ethanol yields were achieved after pretreatment of the sawdust with an 8% moisture content at 205 °C for 10 min, enzymatic hydrolysis at 13 wt% total solids with 25 FPU/g glucans, and fermentation with S. cerevisiae PE-2. In this case, 227 L ethanol and 40 kg total xylose (including xylo-oligomers) were obtained per ton of dry eucalypt sawdust

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
    corecore