12 research outputs found

    From Agri-Food Wastes to Polyhydroxyalkanoates through a Sustainable Process

    Get PDF
    The biologically-derived polymers polyhydroxyalkanoates (PHAs) are biodegradable and can be considered a valuable alternative to conventional fossil-based plastics. However, upstream and downstream processes for PHA production are characterized by high energy and chemical consumption and are not economically competitive with petroleum-based polymers. Aiming to improve both the environmental and economical sustainability of PHAs production, in this work, corn straw was used as raw material to obtain a mixture of fermentable sugars after microwave-assisted flash hydrolysis (2 min, 0.01 g/L, 50.7% yield). A mixed microbial culture enriched from dairy industry waste was used for fermentation in a shake flask, allowing us to achieve good poly(hydroxy-butyrate-co-hydroxy-valerate) yields (41.4%, after 72 h of fermentation). A scale-up in a stirred tank bioreactor (3 L) gave higher yields (76.3%, after 96 h), allowing in both cases to achieve a concentration of 0.42 g/L in the fermentation medium. The possibility of producing PHAs from agricultural waste using a mixed microbial culture from the food industry with enabling technologies could make the production of biopolymers more competitive

    The Effect of Human Milk on Modulating the Quality of Growth in Preterm Infants

    Get PDF
    Introduction: Human milk is the optimal nutrition for preterm infants. When the mother's own milk is unavailable, donor human milk is recommended as an alternative for preterm infants. The association among early nutrition, body composition and the future risk of disease has recently attracted much interest. The aim of this study was to investigate the effect of human milk on the body composition of preterm infants.Materials and Methods: Very low birth weight infants (VLBW: birth weight <1,500 g) with a gestational age (GA) between 26 and 34 weeks were included. Clinical data, anthropometric measurements and nutritional intake in terms of the volume of human milk were extracted from computerized medical charts. The human milk intake was expressed as a percentage of target fortified donor human milk and/or target fortified fresh mother's milk, compared with the total volume of milk intake during the hospital stay. All included infants underwent anthropometric measurements and body composition analysis (expressed as fat-free mass percentage) at term corrected age (CA) by air-displacement plethysmography. A comparison between infants fed human milk at <50% (group 1) and infants fed human milk at ≥50% of the total volume of milk intake (group 2) was conducted. Multiple linear regression analyses were conducted to explore the modulating effect of fortified human milk on fat-free mass at term CA.Results: Seventy-three VLBW infants were included in the study. The mean weight and GA at birth were 1,248 ± 198 g and 30.2 ± 2.0 weeks, respectively. No differences were found regarding anthropometric measurements at birth, at discharge and at term CA between the two groups. The mean fortified human milk intake was 34.9 ± 12.5 and 80.9 ± 15.5% in groups 1 and 2, respectively (p < 0.001).A multiple regression analysis corrected for sex and birth weight demonstrated that intake of ≥50% fortified human milk was associated with a higher fat-free mass percentage at term CA than intake of <50% fortified human milk.Conclusion: The use of target fortified human milk modulated growth and improved growth quality in vulnerable preterm infants. Thus, the use of donor human milk should be encouraged when fresh mother's milk is insufficient or not available

    Enhanced and Selective Lipid Extraction from the Microalga P. tricornutum by Dimethyl Carbonate and Supercritical CO2Using Deep Eutectic Solvents and Microwaves as Pretreatment

    Get PDF
    Microalgae are promising alternative sources of several bioactive compounds that are useful for human applications. However, lipids are traditionally extracted with toxic organic solvents (e.g., mixtures of chloroform and methanol or hexane). In this work, we develop a new lipid extraction protocol for obtaining a fatty-acids-rich extract from the diatom Phaeodactylum tricornutum. Deep eutectic solvents (DESs) and microwaves (MWs) were investigated as pretreatments for environmentally friendly solvent extractions using dimethyl carbonate (DMC) and supercritical CO2(scCO2). Pretreatments with various DESs formed by choline chloride (ChCl) and different hydrogen-bond donors (oxalic acid, levulinic acid, urea, ethylene glycol, and sorbitol) were tested in combination with DMC extraction. DESs formed by ChCl and carboxylic acids gave the best results, increasing both the selectivity and the total fatty acid (TFA) extraction yield of DMC (by 16% and 80%, respectively). DESs combined with MW heating followed by DMC extraction allowed a TFA yield and fatty acid profile comparable to those of the traditional Bligh and Dyer extraction method to be reached, along with a much better selectivity (88% vs 35%). This pretreatment was also demonstrated to significantly improve the extraction efficiency of scCO2, increasing the TFA yield by a factor of 20 and providing highly purified triglyceride extracts

    Macronutrient content of pooled donor human milk before and after Holder pasteurization

    No full text
    Abstract Background Donor human milk (DHM) is the best alternative for preterm infants when their own mother’s milk is unavailable. DHM should be pasteurized to guarantee microbiological safety; however, this process can influence the macronutrient content. The aim of this study was to investigate the effect of Holder pasteurization (HoP) on DHM macronutrient content. Methods Protein, lactose, lipids (g/100 ml) and energy (kcal/100 ml) of DHM pools were analysed before and after HoP (62.5 °C for 30 min) using mid-infrared spectroscopy (HM analyser Miris AB®). The mean macronutrient content before and after HoP was compared by paired t-test. The percentage decreases (Delta%) were calculated. Results The change in macronutrient content of 460 pools was determined. Protein, lipids and lactose decreased significantly after HoP (0.88 ± 0.20 vs 0.86 ± 0.20 and 2.91 ± 0.89 vs 2.75 ± 0.84 and 7.19 ± 0.41 vs 7.11 ± 0.48 respectively). The Delta% values were − 2.51 ± 13.12, − 4.79 ± 9.47 and − 0.92 ± 5.92 for protein, lipids and lactose, respectively (p ≤ 0.001). Conclusion This study confirms that the macronutrient content of DHM, especially in terms of lipids and protein, is reduced after HoP. Therefore, in order to perform a tailored fortification of DHM, the clinicians need to be aware of the somewhat diminished nutrient content of DHM

    Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass production, chlorophyll content and N assimilation

    No full text
    Humic-like substances obtained by alkaline hydrolysis of composted organic wastes are known to improve plant productivity. Little is known concerning the effect on plant growth of hydrolysates obtained by alkaline treatment of non-composted vegetal residues.The aim of this study was to prepare, characterize, and apply in horticulture the soluble and the insoluble fractions obtained by alkaline hydrolysis of exhausted tomato plants. The hydrolysates were prepared in a pilot plant from the tomato plants residue in powder form and characterized by solid state 13C NMR spectrometry, elemental analysis and potentiometric titration. The characterization of the soluble hydrolysate gave evidence of lignin and hemicellulose moieties, together with protein, peptide or amino acids while most of the cellulose was found in the insoluble fraction. Plant beans were grown on a peat and sand substrate fertilized with low application rate of the tomato plant powder and of the corresponding hydrolysates. The effect on bean plants was assessed by determination of plant growth, chlorophyll content, nitrate reductase, glutamine synthetase, glutamate synthase activities and soluble proteins.The tomato plant powder had no effect on all parameters measured on the grown bean plants. On the contrary, the insoluble and soluble substances sourced by alkaline hydrolysis of the tomato plant powder exhibit strong effects, mainly the increase of nitrogen assimilation typical of biostimulants.The results suggest that residual plant biomasses are source of efficient biostimolant and propose the hydrolysis of residual biomass as a viable profitable process to contribute important improvements also for waste management practices. \ua9 2014 Elsevier B.V

    Energy Expenditure, Protein Oxidation and Body Composition in a Cohort of Very Low Birth Weight Infants

    No full text
    The nutritional management of preterm infants is a critical point of care, especially because of the increased risk of developing extrauterine growth restriction (EUGR), which is associated with worsened health outcomes. Energy requirements in preterm infants are simply estimated, so the measurement of resting energy expenditure (REE) should be a key point in the nutritional evaluation of preterm infants. Although predictive formulae are available, it is well known that they are imprecise. The aim of our study was the evaluation of REE and protein oxidation (Ox) in very low birth weight infants (VLBWI) and the association with the mode of feeding and with body composition at term corrected age. Methods: Indirect calorimetry and body composition were performed at term corrected age in stable very low birth weight infants. Urinary nitrogen was measured in spot urine samples to calculate Ox. Infants were categorized as prevalent human milk (HMF) or prevalent formula diet (PFF). Results: Fifty VLBWI (HMF: 23, PFF: 27) were evaluated at 36.48 ± 0.85 post-conceptional weeks. No significant differences were found in basic characteristics or nutritional intake in the groups at birth and at the assessment. No differences were found in the REE of HMF vs. PFF (59.69 ± 9.8 kcal/kg/day vs. 59.27 ± 13.15 kcal/kg/day, respectively). We found statistical differences in the protein-Ox of HMF vs. PFF (1.7 ± 0.92 g/kg/day vs. 2.8 ± 1.65 g/kg/day, respectively, p < 0.01), and HMF infants had a higher fat-free mass (kg) than PFF infants (2.05 ± 0.26 kg vs. 1.82 ± 0.35 kg, respectively, p < 0.01), measured with air displacement plethysmography. Conclusion: REE is similar in infants with a prevalent human milk diet and in infants fed with formula. The HMF infants showed a lower oxidation rate of proteins for energy purposes and a better quality of growth. A greater amount of protein in HMF is probably used for anabolism and fat-free mass deposition. Further studies are needed to confirm our hypothesis

    Enhanced and Selective Lipid Extraction from the Microalga <i>P. tricornutum</i> by Dimethyl Carbonate and Supercritical CO<sub>2</sub> Using Deep Eutectic Solvents and Microwaves as Pretreatment

    No full text
    Microalgae are promising alternative sources of several bioactive compounds that are useful for human applications. However, lipids are traditionally extracted with toxic organic solvents (e.g., mixtures of chloroform and methanol or hexane). In this work, we develop a new lipid extraction protocol for obtaining a fatty-acids-rich extract from the diatom <i>Phaeodactylum tricornutum</i>. Deep eutectic solvents (DESs) and microwaves (MWs) were investigated as pretreatments for environmentally friendly solvent extractions using dimethyl carbonate (DMC) and supercritical CO<sub>2</sub> (scCO<sub>2</sub>). Pretreatments with various DESs formed by choline chloride (ChCl) and different hydrogen-bond donors (oxalic acid, levulinic acid, urea, ethylene glycol, and sorbitol) were tested in combination with DMC extraction. DESs formed by ChCl and carboxylic acids gave the best results, increasing both the selectivity and the total fatty acid (TFA) extraction yield of DMC (by 16% and 80%, respectively). DESs combined with MW heating followed by DMC extraction allowed a TFA yield and fatty acid profile comparable to those of the traditional Bligh and Dyer extraction method to be reached, along with a much better selectivity (88% vs 35%). This pretreatment was also demonstrated to significantly improve the extraction efficiency of scCO<sub>2</sub>, increasing the TFA yield by a factor of 20 and providing highly purified triglyceride extracts
    corecore