8 research outputs found

    Transcranial direct current stimulation modulates motor responses evoked by repetitive transcranial magnetic stimulation

    No full text
    Introduction: Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are non-invasive techniques able to induce changes in corticospinal excitability. In this study, we combined rTMS and tDCS to understand possible interactions between the two techniques, and investigate whether they are polarity dependent. Materials and methods: Eleven healthy subjects participated in the study. Each patient underwent both anodal and cathodal conditioning tDCS in two separate sessions; brief 5 Hz-rTMS trains were delivered over the primary motor cortex at an intensity of 120% the resting motor threshold (RMT) before tDCS (T0), immediately after (T1) and 10 min after current offset (T2). We then analysed changes induced by cathodal and anodal tDCS on TMS variables. Results: Our results showed that in both anodal and cathodal sessions, the motor evoked potential (MEP) amplitude increased significantly in size before stimulation (T0). Conversely, after anodal tDCS, the MEP facilitation measured at T1 and T2 was absent, whereas after cathodal tDCS it was preserved. Conclusions: Our findings provide new direct neurophysiological evidence that tDCS influences primary motor cortex excitability. (C) 2012 Elsevier Ireland Ltd. All rights reserved

    Role of MR Imaging and FDG PET/CT in Selection and Follow-up of Patients Treated with Pelvic Exenteration for Gynecologic Malignancies

    No full text
    International audiencePelvic exenteration (PE) is a radical surgical procedure used for the past 6 decades to treat locally advanced malignant diseases confined to the pelvis, particularly persistent or recurrent gynecologic cancers in the irradiated pelvis. The traditional surgical technique known as total PE consists of resection of all pelvic viscera followed by reconstruction. Depending on the tumor extent, the procedure can be tailored to remove only anterior or posterior structures, including the bladder (anterior exenteration) or rectum (posterior exenteration). Conversely, more extended pelvic resection can be performed if the pelvic sidewall is invaded by cancer. Preoperative imaging evaluation with magnetic resonance (MR) imaging and fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is central to establishing tumor resectability and therefore patient eligibility for the procedure. These imaging modalities complement each other in diagnosis of tumor recurrence and differentiation of persistent disease from posttreatment changes. MR imaging can accurately demonstrate local tumor extent and show adjacent organ invasion. FDG PET/CT is useful in excluding nodal and distant metastases. In addition, FDG PET/CT metrics may serve as predictive biomarkers for overall and disease-free survival. This pictorial review describes different types of exenterative surgical procedures and illustrates the central role of imaging in accurate patient selection, treatment planning, and postsurgical surveillance

    Non-transplant surgical approach to liver-based hereditary haemorrhagic telangiectasia: a first report

    No full text
    A 55-year-old woman with hereditary haemorrhagic telangiectasia (HHT) underwent a left lateral liver bisegmentectomy (removal of segments 2 and 3) for hepatic-based arteriovenous malformations. This lesion determined a progressive fatigue and invalidating effort dyspnoea. The postoperative course was uneventful and the patient is currently doing well at 4 years after surgery. To our knowledge, this is the first case of hepatic-based HHT treated with liver resection. This anecdotal report should promote the evaluation of this approach in order to define its role in the treatment of liver involvement in this rare disease

    Vascular Remodeling in Moyamoya Angiopathy: From Peripheral Blood Mononuclear Cells to Endothelial Cells

    No full text
    The pathophysiological mechanisms of Moyamoya angiopathy (MA), which is a rare cerebrovascular condition characterized by recurrent ischemic/hemorrhagic strokes, are still largely unknown. An imbalance of vasculogenic/angiogenic mechanisms has been proposed as one possible disease aspect. Circulating endothelial progenitor cells (cEPCs) have been hypothesized to contribute to vascular remodeling of MA, but it remains unclear whether they might be considered a disease effect or have a role in disease pathogenesis. The aim of the present study was to provide a morphological, phenotypical, and functional characterization of the cEPCs from MA patients to uncover their role in the disease pathophysiology. cEPCs were identified from whole blood as CD45dimCD34+CD133+ mononuclear cells. Morphological, biochemical, and functional assays were performed to characterize cEPCs. A significant reduced level of cEPCs was found in blood samples collected from a homogeneous group of adult (mean age 46.86 ± 11.7; 86.36% females), Caucasian, non-operated MA patients with respect to healthy donors (HD; p = 0.032). Since no difference in cEPC characteristics and functionality was observed between MA patients and HD, a defective recruitment mechanism could be involved in the disease pathophysiology. Collectively, our results suggest that cEPC level more than endothelial progenitor cell (EPC) functionality seems to be a potential marker of MA. The validation of our results on a larger population and the correlation with clinical data as well as the use of more complex cellular model could help our understanding of EPC role in MA pathophysiology
    corecore