28 research outputs found

    Statistical learning of target selection and distractor suppression shape attentional priority according to different timeframes

    Get PDF
    Recent findings suggest that attentional and oculomotor control is heavily affected by past experience, giving rise to selection and suppression history effects, so that target selection is facilitated if they appear at frequently attended locations, and distractor filtering is facilitated at frequently ignored locations. While selection history effects once instantiated seem to be long-lasting, whether suppression history is similarly durable is still debated. We assessed the permanence of these effects in a unique experimental setting investigating eye-movements, where the locations associated with statistical unbalances were exclusively linked with either target selection or distractor suppression. Experiment 1 and 2 explored the survival of suppression history in the long and in the short term, respectively, revealing that its lingering traces are relatively short lived. Experiment 3 showed that in the very same experimental context, selection history effects were long lasting. These results seem to suggest that different mechanisms support the learning-induced plasticity triggered by selection and suppression history. Specifically, while selection history may depend on lasting changes within stored representations of the visual space, suppression history effects hinge instead on a functional plasticity which is transient in nature, and involves spatial representations which are constantly updated and adaptively sustain ongoing oculomotor control

    suppression history of distractor location biases attentional and oculomotor control

    Get PDF
    ABSTRACTPast selection experience greatly affects the deployment of attention such that targets are more readily selected if their features or locations were more frequently selected in the past. C..

    Gaze direction influences grasping actions towards unseen, haptically explored, objects

    Get PDF
    Haptic exploration produces mental object representations that can be memorized for subsequent object-directed behaviour. Storage of haptically-acquired object images (HOIs), engages, besides canonical somatosensory areas, the early visual cortex (EVC). Clear evidence for a causal contribution of EVC to HOI representation is still lacking. The use of visual information by the grasping system undergoes necessarily a frame of reference shift by integrating eye-position. We hypothesize that if the motor system uses HOIs stored in a retinotopic coding in the visual cortex, then its use is likely to depend at least in part on eye position. We measured the kinematics of 4 fingers in the right hand of 15 healthy participants during the task of grasping different unseen objects behind an opaque panel, that had been previously explored haptically. The participants never saw the object and operated exclusively based on haptic information. The position of the object was fixed, in front of the participant, but the subject's gaze varied from trial to trial between 3 possible positions, towards the unseen object or away from it, on either side. Results showed that the middle and little fingers' kinematics during reaching for the unseen object changed significantly according to gaze position. In a control experiment we showed that intransitive hand movements were not modulated by gaze direction. Manipulating eye-position produces small but significant configuration errors, (behavioural errors due to shifts in frame of reference) possibly related to an eye-centered frame of reference, despite the absence of visual information, indicating sharing of resources between the haptic and the visual/oculomotor system to delayed haptic grasping

    Rehabilitation and biomarkers of stroke recovery: study protocol for a randomized controlled trial

    Get PDF
    Background: Stroke is a leading cause of disability. Nonetheless, the care pathway for stroke rehabilitation takes partially into account the needs of chronic patients. This is due in part to the lack of evidence about the mechanisms of recovery after stroke, together with the poor knowledge of related and influencing factors. Here we report on the study protocol \u201cRehabilitation and Biomarkers of Stroke Recovery,\u201d which consists of 7 work-packages and mainly aim to investigate the effects of long-term neurorehabilitation on stroke patients and to define a related profile of (clinical-biological, imaging, neurophysiological, and genetic-molecular) biomarkers of long-term recovery after stroke. The work-package 1 will represent the main part of this protocol and aims to compare the long-term effects of intensive self-rehabilitation vs. usual (rehabilitation) care for stroke. Methods: We planned to include a total of 134 adult subacute stroke patients (no more than 3 months since onset) suffering from multidomain disability as a consequence of first-ever unilateral ischemic stroke. Eligible participants will be randomly assigned to one of the following groups: intensive self-rehabilitation (based on the principles of \u201cGuided Self-Rehabilitation Contract\u201d) vs. usual care (routine practice). Treatment will last 1 year, and patients will be evaluated every 3 months according to their clinical presentation. The following outcomes will be considered in the main work-package: Fugl-Meyer assessment, Cognitive Oxford Screen Barthel Index, structural and functional neuroimaging, cortical excitability, and motor and somatosensory evoked potentials. Discussion: This trial will deal with the effects of an intensive self-management rehabilitation protocol and a related set of biomarkers. It will also investigate the role of training intensity on long-term recovery after stroke. In addition, it will define a set of biomarkers related to post-stroke recovery and neurorehabilitation outcome in order to detect patients with greater potential and define long-term individualized rehabilitation programs. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04323501

    Dissociable Effects of Reward on Attentional Learning: From Passive Associations to Active Monitoring

    Get PDF
    Visual selective attention (VSA) is the cognitive function that regulates ongoing processing of retinal input in order for selected representations to gain privileged access to perceptual awareness and guide behavior, facilitating analysis of currently relevant information while suppressing the less relevant input. Recent findings indicate that the deployment of VSA is shaped according to past outcomes. Targets whose selection has led to rewarding outcomes become relatively easier to select in the future, and distracters that have been ignored with higher gains are more easily discarded. Although outcomes (monetary rewards) were completely predetermined in our prior studies, participants were told that higher rewards would follow more efficient responses. In a new experiment we have eliminated the illusory link between performance and outcomes by informing subjects that rewards were randomly assigned. This trivial yet crucial manipulation led to strikingly different results. Items that were associated more frequently with higher gains became more difficult to ignore, regardless of the role (target or distracter) they played when differential rewards were delivered. Therefore, VSA is shaped by two distinct reward-related learning mechanisms: one requiring active monitoring of performance and outcome, and a second one detecting the sheer association between objects in the environment (whether attended or ignored) and the more-or-less rewarding events that accompany them

    Elaborazione corticale dei segnali visivi

    No full text
    Aree corticali coinvolte nell'analisi degli stimoli visiv

    Princ\uecpi di ottica fisiologica

    No full text
    Introduzione all'ottica fisiologic

    Aspetti generali della funzione visiva

    No full text
    Introduzione alla neurofisiologia della visione

    Distractor filtering via Suppression History: transient, short or long-term plasticity?

    No full text

    Attentional mechanisms in ventral pathway

    No full text
    Attentional modulation along the ventral pathway of the cortical visual system of primates consists in enhanced representation of the retinal input at a specific location in space, or of objects located anywhere in the visual field which possess a critical feature. Crucially, selective attention mechanisms also allow the visual system to resolve competition among multiple objects in a cluttered scene in favor of the one that is relevant for the current behavior. Finally, selective attention affects both the spontaneous activity of neurons as well as their visually driven activity, and it does so not only by modulating the rate of firing of individual neurons, but also by modulating the degree of synchronized firing within the critical neuronal populations
    corecore