6 research outputs found

    Combined use of a transmission detector and an epid-based in vivo dose monitoring system in external beam whole breast irradiation: A study with an anthropomorphic female phantom

    Get PDF
    We evaluate the combined usage of two systems, the Integral Quality Monitor (IQM) transmission detector and SoftDiso software, for in vivo dose monitoring by simultaneous detection of delivery and patient setup errors in whole breast irradiation. An Alderson RANDO phantom was adapted with silicon breast prostheses to mimic the female anatomy. Plans with simulated delivery errors were created from a reference left breast plan, and patient setup errors were simulated by moving the phantom. Deviations from reference values recorded by both monitoring systems were measured for all plans and phantom positions. A 2D global gamma analysis was performed in SoftDiso for all phantom displacements. Both IQM signals and SoftDiso R-values are sensitive to small MU variations. However, only IQM is sensitive to jaw position variations. Conversely, IQM is unable to detect patient positioning errors, and the R-value has good sensitivity to phantom displacements. A gamma comparison analysis allows one to determine alert thresholds to detect phantom shifts or relatively large rotations. The combined use of the IQM and SoftDiso allows for fast identification of both delivery and setup errors and substantially reduces the impact of error identification and correction on the treatment workflow

    Combined Use of a Transmission Detector and an EPID-Based In Vivo Dose Monitoring System in External Beam Whole Breast Irradiation: A Study with an Anthropomorphic Female Phantom

    No full text
    We evaluate the combined usage of two systems, the Integral Quality Monitor (IQM) transmission detector and SoftDiso software, for in vivo dose monitoring by simultaneous detection of delivery and patient setup errors in whole breast irradiation. An Alderson RANDO phantom was adapted with silicon breast prostheses to mimic the female anatomy. Plans with simulated delivery errors were created from a reference left breast plan, and patient setup errors were simulated by moving the phantom. Deviations from reference values recorded by both monitoring systems were measured for all plans and phantom positions. A 2D global gamma analysis was performed in SoftDiso for all phantom displacements. Both IQM signals and SoftDiso R-values are sensitive to small MU variations. However, only IQM is sensitive to jaw position variations. Conversely, IQM is unable to detect patient positioning errors, and the R-value has good sensitivity to phantom displacements. A gamma comparison analysis allows one to determine alert thresholds to detect phantom shifts or relatively large rotations. The combined use of the IQM and SoftDiso allows for fast identification of both delivery and setup errors and substantially reduces the impact of error identification and correction on the treatment workflow

    Fully automated volumetric modulated arc therapy technique for radiation therapy of locally advanced breast cancer

    Get PDF
    Abstract Background This study aimed to evaluate an a-priori multicriteria plan optimization algorithm (mCycle) for locally advanced breast cancer radiation therapy (RT) by comparing automatically generated VMAT (Volumetric Modulated Arc Therapy) plans (AP-VMAT) with manual clinical Helical Tomotherapy (HT) plans. Methods The study included 25 patients who received postoperative RT using HT. The patient cohort had diverse target selections, including both left and right breast/chest wall (CW) and III-IV node, with or without internal mammary node (IMN) and Simultaneous Integrated Boost (SIB). The Planning Target Volume (PTV) was obtained by applying a 5 mm isotropic expansion to the CTV (Clinical Target Volume), with a 5 mm clip from the skin. Comparisons of dosimetric parameters and delivery/planning times were conducted. Dosimetric verification of the AP-VMAT plans was performed. Results The study showed statistically significant improvements in AP-VMAT plans compared to HT for OARs (Organs At Risk) mean dose, except for the heart and ipsilateral lung. No significant differences in V95% were observed for PTV breast/CW and PTV III-IV, while increased coverage (higher V95%) was seen for PTV IMN in AP-VMAT plans. HT plans exhibited smaller values of PTV V105% for breast/CW and III-IV, with no differences in PTV IMN and boost. HT had an average (± standard deviation) delivery time of (17 ± 8) minutes, while AP-VMAT took (3 ± 1) minutes. The average γ passing rate for AP-VMAT plans was 97%±1%. Planning times reduced from an average of 6 h for HT to about 2 min for AP-VMAT. Conclusions Comparing AP-VMAT plans with clinical HT plans showed similar or improved quality. The implementation of mCycle demonstrated successful automation of the planning process for VMAT treatment of locally advanced breast cancer, significantly reducing workload
    corecore