5,072 research outputs found

    Cavity assisted measurements of heat and work in optical lattices

    Get PDF
    We propose a method to experimentally measure the internal energy of a system of ultracold atoms trapped in optical lattices by coupling them to the fields of two optical cavities. We show that the tunnelling and self-interaction terms of the one-dimensional Bose-Hubbard Hamiltonian can be mapped to the field and photon number of each cavity, respectively. We compare the energy estimated using this method with numerical results obtained using the density matrix renormalisation group algorithm. Our method can be employed for the assessment of power and efficiency of thermal machines whose working substance is a strongly correlated many-body system.Comment: Accepted version in Quantum. Updates: New results for the work in quenching a Bose-Hubbard model; new references; v3 fixed doi links in references to make paper compliant with Quantu

    Detection of entanglement in ultracold lattice gases

    Full text link
    We propose the use of quantum polarization spectroscopy for detecting multi-particle entanglement of ultracold atoms in optical lattices. This method, based on a light-matter interface employing the quantum Farady effect, allows for the non destructive measurement of spin-spin correlations. We apply it to the specific example of a one dimensional spin chain and reconstruct its phase diagram using the light signal, readily measurable in experiments with ultracold atoms. Interestingly, the same technique can be extended to detect quantum many-body entanglement in such systems.Comment: Submitted to the Special Issue: "Strong correlations in Quantum Gases" in The Journal of Low Temperature Physic

    Genuine quantum correlations in quantum many-body systems: a review of recent progress

    Full text link
    Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems.Comment: Review. Close to published version. Comments are welcome! Please write an email to g.dechiara[(at)]qub.ac.u

    Evaluation of political control instruments for the Swiss alpine region

    Get PDF
    This paper analyses different direct payments system for the Swiss alpine region based on the multi-agent model SWISSland. Moreover, the future demand and management of the alpine pastures are simulated under different scenarios until 2020. In the model, agents are representing existing summer farms and are able to interact with each other. The results imply that the current direct payment system for the Swiss alpine region is effective and able to maintain a stable development until 2020. Since the land management in the alpine region is the activity that provides public goods, it would be reasonable to enforce payments that maximize the area of summered land. A change to contributions coupled to the surfaces could achieve the desired management of the alpine pastures meaning, at the same time, a need of proper monitoring systems.multi-agent models, policy analysis, simulation, alpine region, Agricultural and Food Policy, C16, Q18.,

    Quantum correlations and thermodynamic performances of two-qubit engines with local and collective baths

    Get PDF
    We investigate heat engines whose working substance is made of two coupled qubits performing a generalised Otto cycle by varying their applied magnetic field or their interaction strength during the compression and expansion strokes. During the heating and cooling strokes, the two qubits are coupled to local and common environments that are not necessarily at equilibrium. We find instances of quantum engines coupled to non equilibrium common environments exhibiting non-trivial connections to quantum correlations as witnessed by a monotonic dependence of the work produced on quantum discord and entanglement.Comment: Close to published versio

    Equilibration and nonclassicality of a double-well potential

    Get PDF
    A double well loaded with bosonic atoms represents an ideal candidate to simulate some of the most interesting aspects in the phenomenology of thermalisation and equilibration. Here we report an exhaustive analysis of the dynamics and steady state properties of such a system locally in contact with different temperature reservoirs. We show that thermalisation only occurs 'accidentally'. We further examine the nonclassical features and energy fluxes implied by the dynamics of the double-well system, thus exploring its finite-time thermodynamics in relation to the settlement of nonclassical correlations between the wells.Comment: 10 pages, 7 figures, Close to published versio

    The Rhombi-Chain Bose-Hubbard Model: geometric frustration and interactions

    Get PDF
    We explore the effects of geometric frustration within a one-dimensional Bose-Hubbard model using a chain of rhombi subject to a magnetic flux. The competition of tunnelling, self-interaction and magnetic flux gives rise to the emergence of a pair-superfluid (pair-Luttinger liquid) phase besides the more conventional Mott-insulator and superfluid (Luttinger liquid) phases. We compute the complete phase diagram of the model by identifying characteristic properties of the pair-Luttinger liquid phase such as pair correlation functions and structure factors and find that the pair-Luttinger liquid phase is very sensitive to changes away from perfect frustration (half-flux). We provide some proposals to make the model more resilient to variants away from perfect frustration. We also study the bipartite entanglement properties of the chain. We discover that, while the scaling of the block entropy pair-superfluid and of the single-particle superfluid leads to the same central charge, the properties of the low-lying entanglement spectrum levels reveal their fundamental difference.Comment: 12 pages, 11 figure

    Global and local thermometry schemes in coupled quantum systems

    Get PDF
    We study the ultimate bounds on the estimation of temperature for an interacting quantum system. We consider two coupled bosonic modes that are assumed to be thermal and using quantum estimation theory establish the role the Hamiltonian parameters play in thermometry. We show that in the case of a conserved particle number the interaction between the modes leads to a decrease in the overall sensitivity to temperature, while interestingly, if particle exchange is allowed with the thermal bath the converse is true. We explain this dichotomy by examining the energy spectra. Finally, we devise experimentally implementable thermometry schemes that rely only on locally accessible information from the total system, showing that almost Heisenberg limited precision can still be achieved, and we address the (im)possibility for multiparameter estimation in the system.Comment: 16 pages, 5 figures. Close to published versio

    Cost of counterdiabatic driving and work output

    Get PDF
    Unitary processes allow for the transfer of work to and from Hamiltonian systems. However, to achieve nonzero power for the practical extraction of work, these processes must be performed within a finite time, which inevitably induces excitations in the system. We show that depending on the time scale of the process and the physical realization of the external driving employed, the use of counterdiabatic quantum driving to extract more work is not always effective. We also show that by virtue of the two-time energy measurement definition of quantum work, the cost of counterdiabatic driving can be significantly reduced by selecting a restricted form of the driving Hamiltonian that depends on the outcome of the first energy measurement. Lastly, we introduce a measure, the exigency, that quantifies the need for an external driving to preserve quantum adiabaticity which does not require knowledge of the explicit form of the counterdiabatic drivings, and can thus always be computed. We apply our analysis to systems ranging from a two-level Landau-Zener problem to many-body problems, namely, the quantum Ising and Lipkin-Meshkov-Glick models.Comment: 9 pages, 4 figure

    Dynamics and Asymptotics of Correlations in a Many-Body Localized System

    Get PDF
    We examine the dynamics of nearest-neighbor bipartite concurrence and total correlations in the spin-1/2 XXZXXZ model with random fields. We show, starting from factorized random initial states, that the concurrence can suffer entanglement sudden death in the long time limit and therefore may not be a useful indicator of the properties of the system. In contrast, we show that the total correlations capture the dynamics more succinctly, and further reveal a fundamental difference in the dynamics governed by the ergodic versus many-body localized phases, with the latter exhibiting dynamical oscillations. Finally, we consider an initial state composed of several singlet pairs and show that by fixing the correlation properties, while the dynamics do not reveal noticeable differences between the phases, the long-time values of the correlation measures appear to indicate the critical region.Comment: 5 pages, 5 figures. Close to published versio
    • …
    corecore