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Equilibration and nonclassicality of 
a double-well potential
Steve Campbell, Gabriele De Chiara & Mauro Paternostro

A double well loaded with bosonic atoms represents an ideal candidate to simulate some of the most 
interesting aspects in the phenomenology of thermalisation and equilibration. Here we report an 
exhaustive analysis of the dynamics and steady state properties of such a system locally in contact with 
different temperature reservoirs. We show that thermalisation only occurs ‘accidentally’. We further 
examine the nonclassical features and energy fluxes implied by the dynamics of the double-well system, 
thus exploring its finite-time thermodynamics in relation to the settlement of nonclassical correlations 
between the wells.

The high degree of control available when dealing with ultracold atomic samples makes them ideal candi-
dates for realising prototypical quantum technology devices1,2. The range of practical applications that can be 
addressed using platforms based on the physics of ultracold atomic ensembles ranges from metrology and sens-
ing to the achievement of quantum memories3, from ultra-stable atomic clocks4 to the simulation of difficult 
condensed-matter physics problems5. Recently, such range has been extended to quantum thermometry6–8, while 
theoretical and experimental interest is emerging in the design and implementation of thermodynamic processes 
and (elementary) engines based on such systems9,10. The tuneable interactions among the elementary constituents 
of a cold-atom system, and the availability of effective ways of arranging non-equilibrium states of atomic systems 
confined in external optical potentials, provide an almost ideal scenario for the study and harnessing of thermo-
dynamically relevant questions and tasks, indeed recently thermal and number fluctuations have been studied for 
ultracold atoms in two mode traps11–13.

For such endeavours to succeed, it is absolutely crucial to identify a suitable configuration to act as the basic 
building block for a thermodynamic device, and characterise its working principles in terms of fundamental 
quantities (such as heat and work), which will pave the way to the actual construction of the machine itself.

In this paper, we move exactly along these lines: Inspired by the experimental set up of ref. 9, where a cold 
atomic system is placed in contact with two different thermal reservoirs, we consider a slight modification 
in which the gate potential separating the two reservoirs is replaced by a double well potential loaded with a 
Bose-Einstein condensate (BEC), itself a system of vast experimental implementability14,15. We set and study 
explicitly its non-equilibrium dynamics. By assuming each well is initially thermalised to its own local reservoir, 
we will show that, in the tunnelling dominated regime, a temperature imbalance between the wells leads to the 
emergence of non-classicality, and study how this is linked to the equilibration dynamics of the atomic system. 
Remarkably, we show that the genuinely quantum nature of the state of the double well does not appear to affect 
the rate of equilibration of the open system at hand. By working in the weak coupling regime between each well 
and its reservoir, which allows us to identify clearly the contributions of each well to the total heat flux into/out of 
the local environments, we highlight a rather rich and complex dynamics of the heat exchange across the wells. 
Further, we examine its relation with the emergence of nonclassical correlations within the state of the atomic 
ensemble within a vast range of operating conditions.

Description of the model
We are interested in studying the out of equilibrium dynamics and steady-state properties of a system of cold 
atoms loaded in a double-well potential and subject to the effects of two reservoirs at different energy. Our 
Hamiltonian is the two-site Bose-Hubbard model14 given by = + +ˆ ˆ ˆ ˆ

f si t     with [we assume units such 
that  = 1 throughout]
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Here ˆ
f  describes the free evolution of the atomic systems in the two wells, each occurring at the rate set by 

the single-atom energy ωj, and with ,ˆ ˆ†a aj j  the associated annihilation and creation operators for each well. The 
Hamiltonian term ˆ

si  accounts for the self-interaction (at rate U) between atoms occupying the same well, while 
ˆ

t  stands for the tunnelling term, which occurs at rate  . We will focus mostly on the tunnelling-dominated 
regime associated with U =  0. However, the interaction-dominated regime corresponding to   =  0, and the inter-
mediate regime will also be addressed. The focus of our investigation will be the phenomenology of thermalisa-
tion of the system, both at the single and two-well level. We remark that model, Eq. (1), can be realised in a variety 
of settings including superconducting Josephson junctions16, trapped ions17, bimodal optical cavities18 and 
optomechanical setups19.

While important insight will be gathered by addressing the unitary evolution induced by considering ̂, the 
overarching goal of this work is the study of the open-system evolution created by the contact of the two wells 
with their respective reservoirs. We are interested in addressing the dynamics induced by the master equation20
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where we have introduced the overall-system density matrix at a generic time t, t , and the Lindblad 
super-operators
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which describe the incoherent particle-exchange process (occurring at rate γj) between a well and the respective 
reservoir (assumed to have a thermal occupation number nj). Eq. (2) is the key equation in our analysis to follow. 
We remark that in certain working conditions this description of the dynamics is not always valid. In particular, 
when the scattering length of the BEC is large, non-Markovian dynamics can play an important role21. We there-
fore assume that the scattering length is sufficiently small to ensure the validity of the Markovian 
approximation21.

Results
Exact solutions of the tunneling-dominated regime.  In order to gather insight into the basic coherent 
processes of the system in the case of tunnelling-dominated regimes, we set U =  0 in ̂ and address the unitary 
evolution first. We define the canonical quadrature operators , , ,ˆ ˆ ˆ ˆx p x p{ }1 1 2 2  as22,23
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and recast the Hamiltonian into the form
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with  the identity operator. By neglecting trivial constant terms, Eq. (5) can be thus interpreted as a quadratic 
form identified by the adjacency matrix
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which has been written in the ordered operator basis , , ,ˆ ˆ ˆ ˆx p x p{ }1 1 2 2 . In what follows, we rescale all the relevant 
frequencies with respect to ω1. In these units, we have ω ω ω→ / = + ∆12 2 1  with Δ  a dimensionless bias 
between the two wells, and ω→ = /J 1  . The rescaled Hamiltonian ω/ˆ

1  can be diagonalised by means of a 
simple two-mode mixing transformation θ( ) = 


− ( + )
θˆ ˆ ˆ ˆ ˆ† †U i a a a aexpT 2 1 2 1 2  with θ = − ( /∆)Jarctan 21

2
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leaves us with the new quadratic Hamiltonian

ω/ = Ω ( + ) + Ω ( + ), ( )ˆ ˆ ˆ ˆ ˆx p x p 7q 1 1 1
2
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2 2
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2
2

describing two freely evolving harmonic oscillators at the respective frequencies Ω1 = 1 + (D - Γ)/2,  
Ω2 = 1 + (D + Γ)/2, with Γ = ∆ + J42 2 . For a Gaussian initial state of the system23, given the quadratic nature 
of the Hamiltonian, rather than tracking the evolution of the density matrix of the system, we can restrict our 
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attention to the evolved form of the covariance matrix σ of entries σ = 〈 , 〉 − 〈 〉〈 〉ˆ ˆ ˆ ˆP P P P{ }ij i j i j , where P̂i’s are the 
elements of the vector of quadrature operators 


= ( )ˆ ˆ ˆ ˆ ˆP x p x p1 1 2 2  and the expectation value of such vector (cal-

culated over the state of the system), which bear full information on the state of the system. Both are readily 
gathered as
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 its time-evolved version. In Eq. (8) (Ω ) ( = , )R t j 1 2j j  and T(θ) are 
the symplectic transformations corresponding to the free evolution − Ω ˆ ˆ†

e i a a tj j j  and two-mode mixing θ( )ÛT . 
Explicitly
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We now concentrate on the situation where the particles in each well are initially at thermal equilibrium with 
their local reservoirs. The initial covariance matrix will thus be that of a two-mode thermal state
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with = 〈 〉¯ ˆ ˆ†n a aj j j  the mean number of particles in the jth well. For such an initial state, the phase-space displace-
ments are all null and full information on the evolved state is provided by the covariance matrix

σ ( ) =







−
−







,

( )

t

n c c
n c c

c c n
c c n

0
0

0
0 11

u

1 1 2

1 2 1

1 2 2

2 1 2

with elements

=
∆( − ) (Γ / )

Γ
, =

( − ) (Γ )
Γ

,

=
( − ) (Γ ) + ( + + ) + ∆ ( + )

Γ
,

=
( − ) (Γ ) + ( + + ) + ∆ ( + )

Γ
.

( )

c
J n n t

c
J n n t

n
J n n t J n n n

n
J n n t J n n n

4 sin 2 2 sin

4 cos 4 1 2 1

4 cos 4 1 2 1
12

1
1 2

2 2
1 2

1

2
1 2

2
1 2

2
1

2

2

2
2 1

2
1 2

2
2

2

If both wells are at the same initial temperature, i.e. =n n1 2, then c1 =  c2 =  0 and = = +n n n2 11 2 1 , i.e. the 
system does not evolve in time and the two wells remain at their thermal equilibrium, notwithstanding the tun-
neling. This is a clear interference effect. Moreover, for identical single-atom energy in each well, i.e. Δ  =  0, c1 is 
null, showing that the position [momentum] x̂1 p̂[ ]1  gets correlated with p̂2 x̂[ ]2 . In general, such correlations do 
not imply necessarily the setting of entanglement between the wells24. Indeed, the tunneling term of the 
Hamiltonian, ̂t in Eq. (1), can generate entanglement only when the state of at least one of the wells is sufficiently 
non-classical. In the context of our investigation here, this basically implies the preparation of squeezed states of 
the wells25. This can be understood by noticing the formal analogy between ˆ

t  and the generator of a two-mode 
mixing transformation and considering, for the sake of argument, the resonant case Δ  =  0. Under such condi-
tions, moving to the interaction picture with respect to ˆ

f , the time evolution operator would correspond to 
( )Û JtT , which gives rise to no entanglement between the two wells when they are prepared in thermal states (even 

at different effective temperatures), as demonstrated in ref. 25. However, this does not imply that the dynamics of 
the two-well system is trivial. In fact, in general, quantum correlations (of a form weaker than entanglement) are 
set by ( )Û Jt  when acting on thermal states with ≠n n1 2. We will address the emergence of discord-like quantum 
correlations26–28 and its relation to the inter-well exchange process in a later section.

We now move to solving the full dissipative dynamics governed by Eq. (2) for U =  0. The problem can be efficiently 
solved by using a suitable Gaussian ansatz: We first translate Eq. (2) into the phase space by deriving a differential equa-
tion for the symmetrically ordered characteristic function χ β β β β( , , ) = ( ) ⊗ ( )ˆ ˆt D DTr[ ]t1 2 1 1 2 2

22,23.  
Here β β β( ) = −ˆ ˆ ˆ† ⁎D a aexp[ ]j j j j j j  is the Weyl displacement operator with amplitude β ∈j  for system j =  1, 2. Using 
the phase-space relations23
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after a lengthy but otherwise straightforward calculation, we find that Eq. (2) takes the form of the Fokker-Planck 
equation
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By letting β = +x ipj j j [so that χ β β χ( , , ) → ( , , , , )t x p x p t1 2 1 1 2 2 ] and expressing the characteristic function 
in terms of the entries of the vector of quadrature variables, we can write χ σ( , , , , ) = 


− 


x p x p t iP X P Pexp1 1 2 2

1
2

  , 
where we have introduced the generic vector of -numbers  = ( )X y z y z1 1 2 2  and matrix σ whose elements we 
aim at finding, which we do by solving Eq. (14). In Methods we provide the set of differential equations for the 
elements of X and σ obtained when evaluating both sides of Eq. (14) and equating them term by term.

The explicit solution of the problem at hand leads to a time-evolved covariance matrix of the general block 
form
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where c is a 2 ×  2 matrix of correlations among the quadrature operators of the system. The diagonal structure of 
the blocks pertaining to the the individual wells shows that, locally, the system thermalises at temperatures deter-
mined by the explicit form of m1,2. However, as c is, in general, not null, global thermalisation is not achieved: the 
overall system never thermalises, notwithstanding an explicitly dissipative evolution. This is clearly seen by look-
ing at the general form of the steady state. Although the analytic form of the non-zero elements is readily achiev-
able for any value of the parameters involved in the problem, they are, in general, too cumbersome to be reported 
here. However, assuming γ1 =  γ2 =  γ, the steady-state of the system is determined by the covariance matrix
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with ζ = γ

γ

+∆

+ +∆J4
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2 2 2 . Clearly, only for =n n1 2 the structure of the global covariance matrix takes a thermal-like 
form. However, this does not preclude the possibility to achieve accidental thermalisation, i.e. situations such that 
the state of the system either becomes globally/locally thermal, or closely approximates an equilibrium configu-
ration. This will be the focus of the following analysis.

Assessment of dynamical thermalisation.  We shall start with the study of the unitary case. Dynamical 
thermalisation in closed-system dynamics is a topic of vast interest, which has recently attracted considerable 
attention at both the theoretical and experimental level29. Our approach is based on the assessment of the dis-
tance between the time-dependent state of the system and a generic (either global or local) thermal state30–33. 
Quantitatively, as a measure of the distance between two states ρA,B, we use the Ulhmann fidelity34

( )ρ ρ ρ ρ ρ( , ) = . ( )F Tr 171 2 1 2 1

2

For Gaussian states, it can be conveniently evaluated using the covariance matrices σA,B associated to the states 
under scrutiny. The explicit formula, which has been recently reported in ref. 35, reads

σ σ
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,
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where σ σΩ = ( ⊕ )i y y  is the two-mode symplectic matrix (σ y being the y-Pauli matrix) and 
 = + + /x 2 2 1 21 2
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In our case we consider σ1 =  σu(t) [cf. Eq. (11)] and σ2 given by either σ µ= ( + )�2 1G
2 4, i.e. the covariance matrix 

of a globally thermal state with mean number of excitations μ, or σ µ µ= ( + ) ⊕ ( + )� �2 1 2 1L
2 1 2 2 2, which is the 

one associated with the tensor product of locally thermal states (each with mean number of excitations μj). For 
clarity, we have indicated with �n the identity matrix of dimension n.

We present the case of global thermalisation first: after calculating the time behaviour of σ σ( ( ), )F tu
G

2  for 
various choices of Δ , we have numerically evaluated the value of μ that achieves the maximum of σ σ( ( ), )F tu

G
2 . 

In Fig. 1 we show both such value and the corresponding estimate for μ. The state fidelity remains evidently quite 
large, being only partially depleted by an increasing value of Δ  (the dependence on such parameter is quite 
non-trivial, given that for Δ  =  2.5, for instance, values very close to those associated with Δ  =  0 can be achieved, 
at suitable times in the evolution). However, while at small values of Δ  the target state changes very little with 
time, this is not the case for increasing bias: the value of μ corresponding to a non-zero Δ  oscillates with a 
non-negligible amplitude as this parameter grows. In any case, perfect thermalisation is never achieved, a result 
that is strengthened by the analysis that we will report in the next Section.

The situation is somehow different when locally thermal target states are considered [cf. Fig. 2]: besides the 
expected times at which a full period of the evolution is achieved, it is possible to identify instants of time at which 
the state of the double-well system is indeed very close to a locally thermal state σ σ( ( ( ), ) ≥ . )F t 0 999u

L
2 , which 

would suggest the occurrence of accidental dynamical thermalisation.
In the open-system dynamics case, a similar calculation allows us to evaluate the fidelity with both a globally 

thermal and locally thermal state as shown in Fig. 3, which studies the effects of both the energy bias [panel (a)] 
and a difference in the damping rates of the two wells [panel (b)]. Quite evidently, both effects spoil the state fidel-
ity, which however achieves values that are either precisely 1 or very close to it. Indeed, focusing on the unbiased 
case with Δ  =  0 and γ1 =  γ2, we know that the solution is given in the form of Eq. (15). Moreover, the off-diagonal 
block matrix c turns out to be anti-diagonal with entries equal in modulus but opposite in sign. Therefore, in 
order to determine if the system has accidentally thermalised, we need only to determine if, at some value of t, 
these entries are identically zero. After some manipulation, this condition reduces to the transcendental equation

γ
= ( ) − ( ).

( )
γe t tcos 2 2 sin 2

20
t

1

1   

Interestingly, this ‘accidental’ thermalisation is independent of the temperature of either well and only con-
cerned with the tunnelling strength and the damping rate. For the same parameters taken to obtain the red curve 
in Fig. 3(b), we find Eq. (20) has two solutions: ω∼ . −t 1 03438 1

1 and ω∼ . −t 1 33749 1
1, clearly corresponding to the 

two instances of local thermalisation in Fig. 3(b). Furthermore, we find the thermal occupation numbers of the 
wells at the first instance of thermalisation are = .n 1 5971  and = .n 1 4032 , and at the second are = .n 1 4221  and 
= .n 1 5782 , thus suggesting that the two instants of accidental thermalisation correspond to an almost swap of the 

two local thermal states. Increasing J leads to more instances of accidental thermalisation occurring before the 
system equilibrates to its steady state.

Assessment of the non-classical nature of the state of the system.  Values of fidelity so close to 
unity should not lead to misinterpretation of the actual nature of the state of the two-well system. In fact, any 

Figure 1.  (a) Maximum fidelity between the instantaneous state of the system and a globally thermal state, 
plotted against the dimensionless evolution time and the (dimensionless) bias between the energies of the wells 
Δ . (b) Corresponding estimate of the mean energy μ of the target globally thermal state. In both panels, we have 
taken J =  2, = / =n n 2 11 2 .
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assessment of fidelity should be accompanied by the study of problem-specific figures of merit able to provide a 
more fine-grained characterisation of the state at hand. For the sake of a study on thermalisation, a significant 
class of such quantifiers is embodied by measures of quantum correlations.

In this respect, it is important here to assess the role, if any, various forms of quantum correlations play in the 
dynamics highlighted above. It is quickly confirmed that, as anticipated before, the system never becomes entan-
gled. While this is expected in light of the nature of the interaction and initial state being considered, nothing 
prevents the settlement of weaker forms of quantum correlations, such as quantum discord (QD)28. QD is the 
difference between two classically equivalent definitions of mutual information when applied to a quantum sys-
tem26,27. A non-zero degree of QD implies that, in a bipartite system composed of parties A and B, information 
can be gathered on system A by interrogating party B. For Gaussian states, QD is captured by the Gaussian quan-
tum discord36–38, which entails that the interrogation of B only involves Gaussian measurements. For a generic 
covariance matrix 

=






S A C

C B
, QD is then defined following ref. 36 (to be consistent with the definition of  

the vacuum state used throughout)

 = ( ) − ( ) − ( ) + ( ), ( )− +h I h d h d h E 21G 1
min

with

=







( − )
+ ( − )( − ) + + ( − )( − )

( − ) ≤ ( + )( + ),

− + − + ( − ) − ( + )

, ( )

E

I
I I I I I I I I I

I I I I I I I

I
I I I I I I I I I I I I

1
1

[2 1 2 1 ]

for 1
1
2

[ 2 ]

otherwise 22

min

1
2 3

2
1 4 2 3 3

2
1 4 2

4 1 2
2

3
2

2 4 1

1
1 2 3

2
4 3

4
4 1 2

2
3
2

1 2 4

where

Figure 2.  (a) Maximum fidelity between the instantaneous state of the system and a locally thermal state, 
plotted against the dimensionless evolution time and the (dimensionless) bias between the energies of the wells 
Δ . (b,c) Estimate of the corresponding mean number of excitations μ1,2 of the target locally thermal state. In 
both panels, we have taken J =  2, = / =n n 2 11 2 .

Figure 3.  Open-system dynamics. (a) Fidelity with a globally thermal state for J =  2, =n 11 , =n 22 , 
γ ω γ ω/ = / = 11 1 2 1 . We have taken Δ  =  0 (blue line) and Δ  =  0.5 (red line). (b) Fidelity with locally thermal 
states for J =  2, =n 11 , =n 22 , and Δ  =  0. We have taken γ ω γ ω/ = / = 11 1 2 1  (red line) and γ ω/ = 11 1  with 
γ ω/ = 32 1  (blue line).
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( ) =

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and =I Adet1 , =I Bdet2 , =I Cdet3 , and =I Sdet4 . In Fig. 4(a) we study QD against the energy bias for the case 
of the unitary solution Eq. (11). Intuitively we would expect that for Δ  =  0, owing to the full symmetry enforced 
in the system, QD will be maximised. This is indeed the case, as it can be seen in Fig. 4(a). However, an interesting 
feature appears as we increase the bias. At ∆/ ∼ .J 2 5, =n 11 , and =n 52 , QD exhibits a plateau, which implies 
the existence of an ‘optimal’ value of the bias, dependent on the temperature difference, that helps amplify the 
non-classicality of the system. Further increase of Δ  pushes the systems too far off resonance, and the coherence 
decays. In Fig. 4(b) we examine this phenomenon closer, for a fixed temperature difference and small biasing, 
Δ /J =  1 (red), we see the oscillatory behaviour changes and the first zero-point is lifted. At the optimal value of Δ  
(solid black) the plateau is clearly evident. When we increase the bias further, we see the decay in the 
non-classicality, as well as a change in the periodicity of the system.

Turning our attention to the dissipative case, in Fig. 5 we compare the unitary dynamics with the dissipative 
case for unbiased wells [panel (a)], and biased ones [panel (b)] at various differences in temperature. For unbiased 
wells, we see dissipation quickly suppresses the the oscillations and we reach a steady state with non-vanishing 
QD. As we increase the temperature between the wells we see an increase in the QD for the unitary case and the 
steady state QD is larger for increasing temperature difference. When we bias the wells, taking Δ /J =  2.5 for all 
temperature differences, we see the dissipative dynamics clearly show the enhanced non-classicality. While the 
time to reach equilibrium appears unaffected, the steady state is significantly more non-classical than in the unbi-
ased situation. This may imply that in this situation the non-classicality plays no role in reaching equilibrium. In 
Fig. 5(c) we examine the effect that self-interaction has on the dynamics of nonclassicality. In order to do so, we 
compute the Gaussian discord of the hypothetical Gaussian state having, as covariance matrix, the one achieved 
by calculating the entries σij over the non-Gaussian state resulting from a chosen non-zero values of U. Evidently 
the larger the self interaction, the more self ordered each well becomes, diminishing the effect of the tunnelling 
and reducing the amount of nonclassicality present. Also we see the system tends to equilibrate faster.

The nonclassicality of the steady state is delicately dependent on the temperature difference, as well as the 
tunneling rate and the bias. In Fig. 6 we examine this behaviour closer, fixing n1 and γ ω γ ω/ = / = 11 1 2 1  with J =  2 
and Δ  =  5. The only conditions for which the system does not exhibit nonclassical correlations is the trivial one 
of =n n2 1. As we increase the temperature imbalance we see that QD increases to a maximum value before slowly 

Figure 4.  (a) Discord versus bias and evolution time for the case of closed-system dynamics. We have taken 
=n 11 , =n 52 , J =  2. (b) Behaviour of quantum discord in the open-system scenario for =n 11 , =n 52 , J =  2 

and the bias choices Δ  =  1 (red curve), 5 (black curve), and 10 (blue curve).

Figure 5.  (a) Dynamical discord for the unitary (gray) and dissipative (red) cases. For both J =  2, =n 11 , and 
=n 22  (dotted), 5 (dashed), and 10 (solid). For all the dissipative cases γ ω γ ω/ = / = 11 1 2 1 . (b) As for panel (a) 

but with the optimal bias (for =n 11 , =n 52 ) between the wells, Δ  =  5. (c) Dissipative dynamical discord J =  2, 
Δ  =  4, γ ω γ ω/ = / = 11 1 2 1 , =n 11 , and =n 22 , with self interaction term U =  0, U =  1 and U =  3 going from top 
to bottom.
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decaying [cf. Fig. 6(a,e)]. If we fix the temperature difference such that =n 11  and =n 52 , we see in panels (b) 
and (c) that there are optimal values of the remaining parameters that give the largest value of discord. While the 
reservoirs have been kept at moderately low energies, in panel (f) we significantly increase both n1 and n2 and see 
that large values of QD can still be achieved. An unbiased configuration leads to values of discord of the order of 
10−5. Increasing the bias, such values are raised by up to one order of magnitude.

Dynamics of the energy flux between the wells.  It is important to gather insight into the details of the 
exchange of energy between the wells of the system, which is at the basis of the process of quasi-thermalisation 
highlighted so far and takes place in two forms: an exchange of particles between the wells and a similar process 
occurring at the interface between the double-well system and the reservoirs. The aim of this section is to identify 
the contribution coming from both such fluxes. We are thus interested in quantifying the flux into/from well j =  1, 
2, which we label as  j , and the total flux  tot. These are given by the quantities

Q H � Q H �= ∂ , = ∂ , ( = , ), ( ) 

ˆ ˆ jTr[ ] Tr[ ] 1 2 24tot t j j t j

where  ω= ( + / )ˆ ˆ ˆ†a a 1 2j j j j  is the free evolution of a single well and  j  is the density matrix of well j. 
Conveniently, these quantities can be directly evaluated from the covariance matrix (and we will assume both 
wells to have the same damping rate, i.e. γ ω γ ω γ/ = / =1 1 2 1 ). We find

=








( + ∆)( − )

+ ∆
( + ∆ )








, = −( + ∆) , = .

( )

γ−
   e J n n

J
J t2 1

4
sin 4 1 0

25
t

tot1

2
2 1

2 2
2 2

2 1   

From here it is easy to confirm that  ω ω/ = − / 

1 1 2 2 and clearly taking γ =  0 or Δ  =  0 recovers the unitary and 
unbiased limits respectively. However, this behaviour is only for the special case of the wells initially being ther-
malised with their baths, while taking a different initial state this behaviour no longer holds. Indeed, what is spe-
cial about our initial state is that it conserves the total energy of the system. This is readily seen given that = 0tot  
and it is easy to confirm that

∆= +
∆
+ + ( + ) , ( )n n1

2
1 26tot 1 2

for all t and J. Of course, the energy of the individual wells changes dynamically (until settling into the same 
steady state).

We can gain further insight into the reason for this by examining closer the quantity we are calculating, i.e.

Figure 6.  Steady-state discord between the two wells for γ1/ω1 = γ2/ω1 = 1, and =n 11 . (a) Plotted against n2 
for J =  2, Δ  =  5. (b) Against Δ  for J =  2 and =n 52 . (c) Against J for =n 52  and Δ  =  5. (d) Maximum discord 
attainable for a given value of n2 found by optimising with respect to both Δ  and J when =n 11  and 
γ ω γ ω/ = / = 11 1 2 1 . (e) Steady-state discord studied against both n1 and n2 when J =  2, Δ  =  5, and 
γ ω γ ω/ = / = 11 1 2 1 . The black line shows that G  is identically null only when =n n1 2. (f) Steady-state discord 
against n2 for =n 1001  with J =  2, γ ω γ ω/ = / = 11 1 2 1 .
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The tunnelling term in Eq. (1) commutes with i, and when U =  0 the only contribution to the total flux is from 
the free evolution of each well. Therefore we are interested in calculating

Q L � L �= ( + ) ( ) + ( + ) ( ) . ( ) ¯ ¯ ¯ ¯n n n nTr[ ] Tr[ ] 28tot 1 2 1 1 2 2

In a tedious but otherwise straightforward calculation, we can explicitly evaluate this expression when assuming 
the special initial condition = ⊗

β β− −ˆ ˆ
e e1 1

1

2 2

2
�

Z Z

H H
, with = 








β− ˆeTrj
j jZ H . We find that both the terms entering Eq. 

(28) are identically zero, thus showing that, in the U =  0 case, the net heat flux is null due to two special circum-
stances: on one hand our chosen initial state, on the other hand the tunnelling term commutes with the super 
operators.

In Fig. 7(a) we show the dynamics of the various energy fluxes given in Eq. (24). We notice how the flux into 
the cooler well is proportional to the flux out of the hotter well, which results in a null net flux. Needless to say, 
the single-well fluxes only account for the net intake/outtake of particles for one of the wells and do not provide 
information on the actual balance between the contribution due to the coupling to the reservoir and that due to 
the coherent inter-well interaction.

We can study the intermediate dynamical regime where the self-interaction is non-zero and comparable with 
the tunnelling by numerically solving Eq. (2) and examining the behaviour of the heat fluxes, of which we illus-
trate some examples in Fig. 7(b,c) [we refer to the caption for an account of the parameters used in the simula-
tions]. The total flux is now non-zero, and the energy is not conserved. However, the average occupation number 
is conserved, i.e. ω ω/ = − /ˆ ˆ ˆ ˆ† †a a a a1 1 1 2 2 2, which follows directly from the previous arguments.

Discussion
The analysis above shows that neither global nor local thermalisation with the reservoirs is achieved. The fidelity 
between the density matrices of the time-evolved state and the target thermal one (whether globally or locally) 
connects the closeness of the populations of the energy levels of the former to the statistics of the latter. However, 
the interaction between the wells establishes strong quantum coherence between the particles of the systems, 
which in turn results in the generation of a substantive degree of quantum correlations, albeit of a nature weaker 
than entanglement, which prevents the thermal character of the resulting state.

The analysis reported here also has the merit of providing rather deep insight into the phenomenology of 
quantum correlations between the wells. We have qualitatively and quantitatively examined the dynamics and 
steady state of a BEC loaded into a double well potential. While the wells remain separable at all times, thus 
sharing no entanglement, by exploring the behaviour of the quantum discord we find the system to be always 
non-classical, except under trivial, uninteresting conditions. Furthermore, the degree of nonclassicality of the 
system is dependent on the energy bias between the two wells. For identical wells, a significant amount of QD is 
possible, provided that a large temperature imbalance is established. Such nonclassicality can be greatly enhanced 
by taking a suitable value of tunnelling, which must be a function of the given bias. The transfer of heat in the 
system is equally complex. 

Methods
Differential Equations.  Here we provide the complete set of differential equations that describe the dissipa-
tive dynamics considered throughout.

Figure 7.  Steady-state discord between the two wells. In all panels γ= , = , = , = , ∆ = .J n n2 1 1 2 41 2  Red 
Line: hotter well (well 2), gray line cooler well (well 1), and blue the total flux. With (a) U =  0. (b) U =  1. (c) 
U =  3.
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Discussions on self interaction dominated limit.  While the main analysis treated the tunnelling dom-
inated regime, the opposite extreme is determined setting J =  0 and exploring the situation where self-interaction 
dominates. In this instance, the two wells are completely decoupled from one another. We can directly solve Eq. 
(2) by projecting onto the number states n . Since these states are eigenstates of the Hamiltonian for J =  0 the 
steady-state will be entirely independent of U. In fact, regardless of the initial state we find the steady state for each 
well to be ρ = β ω− ˆej

n1

j

j j j


 with =β ω−
+

e
n

n 1
j j j

j
, which is the Boltzmann distribution for a harmonic oscillator with 

thermal occupation nj. Clearly then, if our initial states are already thermalised with their local reservoir we see 
no dynamics. For any other initial state, the two wells thermalise independently to their respective reservoir 
temperatures.
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