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Unitary processes allow for the transfer of work to and from Hamiltonian systems. However, to achieve
nonzero power for the practical extraction of work, these processes must be performed within a finite time, which
inevitably induces excitations in the system. We show that depending on the time scale of the process and the
physical realization of the external driving employed, the use of counterdiabatic quantum driving to extract more
work is not always effective. We also show that by virtue of the two-time energy measurement definition of
quantum work, the cost of counterdiabatic driving can be significantly reduced by selecting a restricted form of
the driving Hamiltonian that depends on the outcome of the first energy measurement. Lastly, we introduce a
measure, the exigency, that quantifies the need for an external driving to preserve quantum adiabaticity which does
not require knowledge of the explicit form of the counterdiabatic drivings, and can thus always be computed. We
apply our analysis to systems ranging from a two-level Landau-Zener problem to many-body problems, namely,
the quantum Ising and Lipkin-Meshkov-Glick models.

DOI: 10.1103/PhysRevA.94.042132

I. INTRODUCTION

Recent years have witnessed a surge of interest in the
study of thermal nanomachines that are capable of converting
disordered forms of energy, such as heat, into useful work.
At such small scales, thermal and quantum fluctuations
play a considerable role, and as such the work output and
performance of an engine are characterized probabilistically
by distribution functions. These distributions obey fluctuation
theorems such as the Jarzynski equality and the Crooks
equation [1–4], which have been verified by experiments
both at the classical [5–17] and quantum level [18,19]. There
have also been recent implementations of miniature classical
engines [20–24] and several proposals for the realization of
quantum heat engines [25–28]. Effects of quantum statistics
of the working fluid have also been investigated [29–31].

On the other hand, it has been shown for both classical and
quantum systems that external drivings can allow a system
to evolve adiabatically even when driven in finite time [32–
44]. This has applications in quantum control, and can be
performed in three ways: (i) driving of a system such that,
instantaneously, a state evolves adiabatically (e.g., [32–39]),
which is known as counterdiabatic driving and as transitionless
driving; (ii) protocols for which only at the final time are the
states adiabatically transferred, while there may be excitations
at intermediate times of the process (e.g., [40,41]); (iii)
application of imperfect external drivings which do not allow
for an exact adiabatic transfer, but close enough for most
practical purposes (e.g., [42–44]).

Hence, it was suggested [39] to use such external drivings
to render the unitary processes of a thermodynamic cycle
quantum adiabatic while being performed in finite time. This
could considerably augment the performance of nanother-
modynamic engines as work exchanges are extremized by
adiabatic protocols [45]. However, implementing additional
external driving requires resources which affect the overall
performance of the system [46].

In this paper, we analyze the implications of considering the
necessary power in applying counterdiabatic driving both in a

prototypical system such as the Landau-Zener model [47–50]
and also in many-body quantum systems such as the transverse
field Ising chain [51,52]. Subsequently, we then show that this
cost may outweigh the possible gains in work extraction for
slow enough processes due to the relative degree of adiabaticity
in the dynamics. Conversely, for relatively faster processes, the
use of counterdiabatic driving can improve the work exchange,
depending on the experimental realization of the fields.
Furthermore, we devise a general strategy that exploits the
definition of work as a two-time measurement of energy [53]
to improve the performance of work transfer. In particular,
we show that it is possible to achieve sizable energy savings
by gathering information from the first measurement and then
applying a specifically tailored driving to the protocol. Lastly,
we introduce an alternative measure, the exigency, to quantify
the need for applying counterdiabatic driving which is related
to the noncommutativity between the time derivatives of the
Hamiltonian and the state. This measure has the advantage
in that it can always be computed regardless of whether the
protocol for counterdiabatic driving is known. Moreover, it
mimics the behavior of the cost functions associated to the
transitionless form of counterdiabatic driving and goes to zero
when no external driving is needed. We apply this measure
to the analysis of the quantum harmonic oscillator and the
Lipkin-Meshkov-Glick infinite range spin model.

II. COUNTERDIABATIC DRIVING

A. Transitionless protocol

To begin with, we consider the evolution of a density matrix
ρ̂(t) from t0 to t1 under unitary dynamics of the Hamiltonian
Ĥ0(t). Counterdiabatic quantum driving is obtained by apply-
ing an external Hamiltonian

Ĥt (t) = i�
∑

j

dP̂j (t)

dt
P̂j (t), (1)
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where P̂j = |j 〉〈j | is the projection operator on the in-
stantaneous energy eigenstate |j 〉 of Ĥ0 = ∑

j Ej (t)|j 〉〈j |
[32,33,54–56].

Note that the driving in Eq. (1) is such that all energy
eigenstates evolve transitionlessly. Such a strong requirement
is, however, not necessary when using counterdiabatic driving
to enhance the work output. The mean work exchange of
a single unitary process is defined by a two-time measure-
ment protocol 〈W 〉t0→t1 = ∑

m,n [Em(t1) − En(t0)]Pm,npn(t0)
where Em is the instantaneous energy of the mth level, pn(t0)
is the probability of occupying that level at t0, and Pm,n is the
transition probability from level n at time t0 to level m at time
t1 [53].

Next, as consequence of a resolved energy measurement
performed before the unitary process, the system may collapse
to one of its instantaneous energy eigenstates. Hence, given a
particular outcome of the first energy measurement, we can
apply a suitable driving which preserves the transitionless
evolution of only the measured state (or a relevant submanifold
of the entire system) without the need of avoiding transitions
between the other levels that remain unpopulated throughout.
Such a selected counterdiabatic driving for a particular
eigenstate j is given by [32]

Ĥ
W ,j = i�

[
dP̂j

dt
,P̂j

]
. (2)

Here, we point out that while the present discussion is
primarily in context of unitary evolution, which is important
in its own right, it is also relevant to the more general context
of quantum engine cycles that consists of different strokes.
For instance, an Otto cycle is composed of two unitary strokes
and two strokes in which only heat is transferred with the
environment. An initial density operator that describes the
system, under the (sequential) repetitive application of these
strokes, generally reaches an asymptotic dynamic behavior
which can be used to characterize the cycle. However, charac-
terization of the performance of such an engine cycle includes
determining its net work done and/or efficiency. One approach
to achieve this is to perform energy measurements after each
stroke (however, we remark that in principle one could also
determine the work done using indirect probes [57–59]). These
measurements would then in turn affect the dynamics of the
system changing the asymptotic behavior of the dynamical
evolution. It is thus important to also consider the energy
measurements already within the cycle. See [60,61] for a more
in-depth discussion of measurement within the strokes of an
engine cycle.

B. Power in generating counterdiabatic fields

To quantify the power required to generate such external
driving it is instructive to consider two examples:

(i) A single spin in a time-dependent magnetic field
B0(t), with Hamiltonian Ĥ0,s = γ B0(t) · Ŝ. Here, γ is the
gyromagnetic ratio and Ŝ, for a spin- 1

2 system, is given by
Ŝ = (�/2)σ̂ where σ̂ is the vector composed of the Pauli
matrices.

(ii) A neutral atom in a time-dependent electric field E(t)
such that it experiences a potential V (t) ∝ |E(t)|2.

In (i), the part of the Hamiltonian attributed to the applied
field is given by Ĥb = B1 · Ŝ where B1 = 1

B2
0

B0 × ( ∂ B0
∂t

) [33]

which can be generated by an electric current I (t) such that the
power required would scale as |B1|2 and thus be proportional
to ‖Ĥb‖2. However, for (ii), this term could instead be
proportional to the modulus square of another electric field
VE(t) ∝ |E′(t)|2, and thus the power needed would then scale
with the norm of the driving but not the square of it as in the
previous case.

Thus, while the power required to generate the counterdia-
batic drivings scales as the norm of the driving Hamiltonian
(we use the Frobenius norm ‖Â‖ =

√
Tr[Â†Â] where Â is

an operator), the exact functional dependence on power is
strongly affected by the experimental realization [62]. Hence,
the cost of counterdiabatic driving can be written in general as

Cn
t = νt,n

∫ t1

t0

‖Ĥt‖ndt, (3)

where νt,n is a set-up dependent constant and the index of the
norm n depends on the nature of the applied fields [62,63]. The
principle of its usage here as a measure of cost is similar to the
constraints used in optimal quantum control studies [64,65].
A closely related measure has also recently been used in the
context of energetic cost of superadiabatic computations [66].
It follows that we can define the cost of applying the selected
counterdiabatic Hamiltonian ĤW in a similar fashion:

Cn

W
=

∑
j

ν
W ,j,npj

∫ t1

t0

‖Ĥ
W ,j‖ndt , (4)

which can be interpreted as the weighted average of the cost
of driving each level j , over the level occupation probability
pj = tr(ρ̂P̂j ). In fact, the frequency of use of a particular
driving depends on the probability of measuring that particular
energy level. Similar to νt,n, ν

W ,j,n is a parameter dependent
on the particular experimental setup, and in the following
we set νt,n = ν

W ,j,n = 1 for simplicity. Here, we stress that
while (3) and (4) are entirely general expressions applicable
to counterdiabatic fields, the exact functional dependence (n)
and energy scale νt,n or ν

W ,j,n are dependent on the particular
form of the driving and physical nature of the fields which,
as demonstrated by the two examples considered, cannot be
generalized.

We are now equipped to analyze the implications of
considering the cost of counterdiabatic driving in the perfor-
mance of a work protocol. In the following, we focus on the
Landau-Zener model followed by the Ising model for which
the counterdiabatic driving term is known analytically and
is shown to be closely related to that of the Landau-Zener
model [42].

III. LANDAU-ZENER MODEL

A prototypical model for the study of quantum dynamics
is the Landau-Zener model [47–50] which, in some cases, can
even allow for analytical insights into the dynamics. It consists
of a two-level system with the Hamiltonian

ĤLZ = g(t)σ̂ z + �σ̂x. (5)
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The Landau-Zener model describes the dynamics due to a
time-dependent modulation of g(t) through an avoided level
crossing with a finite-energy gap �. For driving protocols that
are not infinitely slow [i.e., the time derivative ġ(t) �= 0], the
transition probability between the two levels becomes nonzero
and the application of a counterdiabatic field is required to
recover transitionless dynamics [33,42]. Hence, Eq. (1) for the
Landau-Zener model (5) becomes

ĤLZ,t = − �ġ(t)�

2(�2 + g2)
σ̂ y . (6)

Note that it being a two-level system, the driving in Eq. (1)
ĤLZ,t is identical to ĤLZ,W from Eq. (2) [67]. We now compare
the work done in absence of any additional external driving
〈W 〉, with that done for an adiabatic process 〈Wad〉 considered
in conjunction with the cost of counterdiabatic driving. The
counterdiabatic driving is beneficial only when the cost of
producing it is lesser than the inner friction 〈Wfric〉 = 〈W 〉 −
〈Wad〉 generated in absence of the counterdiabatic fields which,
incidentally, is also the amount of additional work extractable
attributed to the driving.

For a Landau-Zener process where the state is initially
far enough from the avoided crossing, the probability of
population transfers decays exponentially with the time scale.
This implies that the inner friction 〈Wfric〉 ∝ exp[−α(t1 − t0)]
also decays exponentially, where α is time independent. As
such, the cost of the driving would need to decay at least
exponentially fast with the increase of the time scale t1 − t0,
or the cost of driving would at some point be greater than the
gains obtained by a perfect adiabatic evolution. However, we
find that the cost of driving always decays as a power law:

Cn
t ∝ 1

(t1 − t0)n−1
. (7)

This can be shown by a simple change of variables s = (t −
t0)/(t1 − t0) that yields Cn

t = [1/(t1 − t0)n−1]
∫ 1

0 ‖Ĥt (s)‖nds

(Cn
W

behaves analogously). It should be noted that this
scaling is completely independent of the system and protocol
used. Hence, the usefulness of counterdiabatic driving will
ultimately always depend on the particular process in question.

Despite this inherently system-specific nature of the relative
behaviors of cost and inner friction, we introduce an entirely
general strategy that reduces the cost of counterdiabatic driving
regardless of the particular experimental realization. This
involves noticing that while for a single two-level system Ĥt

is identical to Ĥ
W ,j , and would thus cost the same amount,

they are vastly different for larger systems, and the resulting
difference in their cost can be very significant.

IV. ISING MODEL

To illustrate this, we focus on the transverse field Ising
model because it allows for greater analytical insights with
the exact form of the counterdiabatic field known, while at the
same time presenting a phase transition. Its Hamiltonian reads
as

ĤI = −
∑

i

J σ̂ x
i σ̂ x

i+1 + g(t)σ̂ z
i . (8)

FIG. 1. (a), (b) Instantaneous cost of counterdiabatic driving for
two spins (a) and eight spins (b). The red circles represent ∂tC

1
t

while blue continuous lines depict ∂tC
1
W

for decreasing values of the
inverse temperature (as indicated by the arrow) β = ∞ (top) to β = 0
(bottom). The inset of (a) shows the instantaneous exigency ∂tC0 also
from β = ∞ (top) to β = 0 (bottom).

In Eq. (8), J is the amplitude of spin excitation tunneling
while g(t) is a time-dependent transverse magnetic field. In
the following, we use a smooth ramp

g(t) = g0 + (g1 − g0){1 − cos[π (t − t0)/(t1 − t0)]}/2 (9)

in order to avoid sudden quenches [40].
Now, we consider the case of two spins revealing the basic

principles of our strategy. The Hamiltonian, which we refer
to as Ĥ2s , is divided into two blocks, one which dynamically
couples the state with two spin up |↑↑〉 with |↓↓〉, and the
other which couples |↑↓〉 with |↓↑〉. The first block reverts to
a two-level Landau-Zener problem, which, as in (6), requires
the application of the counterdiabatic Hamiltonian

ĤI2,t = − i�ġ(t)

J 2 + 4g2(t)
{|↑↑〉〈↓↓| − |↓↓〉〈↑↑|}. (10)

The second block is time independent and hence requires no
external driving. Considering a thermal state as the initial
condition and a change of g from 0.5J to 1.5J we observe
a significant difference in Cn

t and Cn
W

(Fig. 1). In fact, with a
probability that is dependent on temperature, the first energy
measurement could pick a state in the undriven sector which
would thus require no external driving such that Cn

W
� Cn

t . In
particular, Cn

W
can be as small as Cn

t /2 for small β.
When considering a larger system, the many-body physics

makes this study even richer. The Ising model in Eq. (8)
exhibits a quantum phase transition at g = ±J in the ther-
modynamic limit, with the ground state being paramagnetic
for |g| > J and ferromagnetic for |g| < J . Here, g(t) is
varied in time in order to cross |g| = J , without considering
the case N → ∞ because no counterdiabatic driving can
be exactly done in that regime [42]. For L spins (which
we take to be even in the following), we use the Jordan-
Wigner transformations [68–70] σ̂ z

i = 1 − 2ĉ
†
i ĉi and σ̂ x

i =
−(ĉi + ĉ

†
i )

∏
j<i (1 − 2ĉ†ĉj ) on ĤI,s to write Eq. (8) in the
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free-fermion form in momentum space

ĤI,k =P̂e

⎛
⎝∑

k∈ke

Ĥk

⎞
⎠P̂e + P̂o

⎛
⎝∑

k∈ko

Ĥk + Ĥ0,π

⎞
⎠P̂o, (11)

where Ĥk = �̂k
†{[g(t) − J cos(k)]σ z − J sin(k)σx}�̂k ,

Ĥ0,π = 2g(1 − ĉ0
†ĉ0 − ĉπ

†ĉπ ). �̂k
† = (ĉk

†, ĉ−k) and P̂e (P̂o)
projects on the even (odd) sector corresponding to the space
containing an even (odd) number of fermionic excitations.
In the even sector, due to antiperiodic boundary conditions,
k takes the values ke = ±(2j − 1)π/L for j ∈ [1,L/2]
while in the odd sector, with periodic boundary conditions,
ko = ±2jπ/L for j ∈ [1,L/2) in addition to ko = 0 and
π [69,70]. As shown in [42], where the authors are concerned
with the ground state, and focused on only the even sector,
ĤI,k is a sum of independent Landau-Zener transitions and
the counterdiabatic driving ĤI,t is thus given by

ĤI,t =
∑

0<k<π

f (k,t)�̂k
†σy

k �̂k, (12)

where f (k,t) = −�ġ(t)J sin(k)/{2[g2 + J 2 − 2gJ cos(k)]}
and �̂†

k = (ĉ†k,ĉ−k). Again, ĤI,W depends on the state(s)
selected upon the first energy measurement. Thus, in a similar
fashion to the case of the two spins (albeit in a far richer
way), the first energy measurement may select a reduced
portion of the even or odd sectors: ĤI,W = P̂{k̃}ĤI,t P̂{k̃}, where
P̂{k̃} projects over only the relevant set of quasimomenta k̃

(e.g., P̂{k} projects only over the set of even eigenstates),
that are connected by pair creation or destruction operators
(see Appendix A). As a result, CI,W /CI,t can be considerably
reduced especially at high temperatures [see Fig. 2(a)] [71].
The reduction in the energy cost of the counterdiabatic driving
can be further reduced for longer spin chains and is more
significant when the initial condition does not include states
whose dynamics entails small avoided crossings (in this case,
the cost could be negligible).

Our results show that it becomes more costly to drive
the Ising model transitionlessly as β → ∞ (i.e., at zero
temperature). This might seem counterintuitive since the
system increasingly approaches its ground state and thus

FIG. 2. (a) Ratio of costs C1
W/C1

t versus inverse temperature β.
The arrows indicate the asymptotic value computed for the ground
state (at β = ∞). (b) C0/C1

t versus β. The blue continuous line
represents L = 4, green dashed line L = 6, and red dotted line L = 8.

would only require a single eigenstate to be driven. However,
while in general there can be considerable energy savings
when the first energy measurement selects only a single state,
the cost of guaranteeing adiabatic dynamics may become
considerably large when this particular state happens to be
the ground state and that the system is going across a quantum
phase transition. In fact, it would cost an infinite amount of
energy (for an infinitely large system) to evolve in a perfectly
adiabatic manner [42,43]. As we consider finite systems, the
corresponding cost for driving the ground state will not be
infinite, but instead be typically larger.

V. EXIGENCY

While Cn
t and Cn

W
indicate the energy cost of achieving

quantum adiabatic dynamics with external drivings, it cannot
always be computed because it requires the knowledge of the
counterdiabatic field. Moreover, the counterdiabatic driving
always ensures absence of transitions even when they would be
perfectly balanced. For example, the identity matrix commutes
with any Hamiltonian, hence, it does not require any driving
to preserve it. We thus look for an indicator for the need
of using counterdiabatic driving which (i) would be nonzero
when a driving is needed and (ii) can always be computed. We
thus study the origin of the need of counterdiabatic driving by
analyzing the evolution of a density matrix which is given by
ρ̂(t1) = Û ρ̂(t0)Û † with Û = T exp[−i

∫ t1
t0

Ĥ0(t)dt/�], where
T stands for the time-ordering operator. Since the initial
conditions considered are diagonal in the basis of the initial
Hamiltonian Ĥ0(t0) (this includes all thermal states), to the
lowest order in dt the evolution of ρ̂ is given by

ρ̂(t + dt) =ρ̂(t) − i

�

dtn+1

n!

[
Ĥ

(n)
0 (t),ρ̂(t)

] + O(dtn+2),

(13)

where Ĥ
(n)
0 (t) is the nth derivative of Ĥ0(t) and n is the

lowest natural number for which the commutator in Eq. (13)
is nonzero (details can be found in Appendix B). This implies
that the first term of Eq. (13) which may contribute is at least
of second order in dt . It follows that the instantaneous power
dissipated by internal friction is P = limdt→0〈δWfric〉/dt =
0 [72–78], where 〈δWfric〉 = 〈δW 〉 − 〈δWad〉 and 〈δW 〉 is the
actual infinitesimal work while 〈δWad〉 is the infinitesimal
work done if the process was quantum adiabatic. This,
however, does not mean that applying an external driving to
make the evolution quantum adiabatic requires no power. The
fact that the instantaneous variation of inner friction over time
〈δWfric〉/δt is negligible for continuous drivings implies that
it is not the best measure of either the need of counterdiabatic
driving or of its cost. Note that this is different from Ref. [79]
where the density matrix instantaneously does not commute
with the Hamiltonian.

From Eq. (13), we measure the need for counterdiabatic
driving using the quantity C0, which we refer to as exigency:

C0 =
∫ t1

t0

∥∥∥∥
[
∂Ĥ0(t)

∂t
,ρ̂(t)

]∥∥∥∥dt. (14)

Equation (14) provides a qualitative understanding of the
cost of driving, making it remarkably useful as it can be
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FIG. 3. Comparison of exigency to the cost of transitionless
driving in the Landau-Zener model [Eq. (5)] as g(t) is driven from
g(t0) = −10� to g(t1) = 5� following also Eq. (9). Red continuous
line represents ∂tC

1
t while the other lines show ∂tC0 for an initial

ground-state occupation of pg = 1 (blue dotted-dashed line) and
pg = 0.75 (light blue dashed line). Here, τ = (t − t0)/(t1 − t0) and
(t1 − t0) = �−1

�.

readily calculated for any Hamiltonian. C0 measures the
degree of noncommutativity between ρ̂ and the Hamiltonian
which, if nonzero, implies the need of counterdiabatic driving.
Moreover, (i) C0 → 0 as β → 0 as desired, since ρ̂ is propor-
tional to the identity and commutes with any time-dependent
Hamiltonian and thus not need any counterdiabatic driving
[see inset of Figs. 1(a) and 2(b)], and (ii) the instantaneous cost
∂tC0, as shown in the inset of Fig. 1(a) and in Fig. 3 mimics
that of the counterdiabatic driving ∂tC

1
t and similarly for larger

n in Cn
t . In particular, in Fig. 3 we plot the instantaneous

cost of the external driving ∂tC
n
t for a Landau-Zener problem

described by ĤLZ with the same g(t) of Fig. 1 and compare it
to the instantaneous power estimated from Eq. (14), i.e., ∂tC0.
While these different measures cannot be exactly compared to
each other because of the different, experimentally determined,
constant νμ,n, they behave similarly. This means that, even
without knowing the exact form of the counterdiabatic driving
term Ĥt , it is still possible to have a qualitative understanding
of the cost of the driving by studying C0. We should also
note, however, that the maximum instantaneous cost is not
always maximum at a minimum of distance between energy
levels in avoided crossings (as in the standard Landau-Zener
problem) because it also depends on the exact time dependence
of the Hamiltonian parameters. For more asymmetric cases,
the instantaneous exigency ∂tC0 can differ, even qualitatively,
from the cost function ∂tC

n
t . To further illustrate the advantage

of the exigency we conclude with some additional examples
in the next subsections: the harmonic oscillator and the
Lipkin-Meshkov-Glick model.

A. Exigency: Harmonic oscillator

The Hamiltonian for the quantum harmonic oscillator with
time-dependent frequency ω(t) is given by

Ĥ ho
0 = p̂2

2m
+ m

2
[ω(t)]2x̂2, (15)

where m is the mass and p̂ is the momentum operator. In
Ref. [80], the exact counterdiabatic term was found to take the

simple form

Ĥ ho
t = − ω̇

4ω
(x̂p̂ + p̂x̂). (16)

where the overdot refers to the time derivative. Since Ĥ ho
0 is

unbounded, C1
t is not finite. However, the exigency can still

be used to establish the need to perform the counterdiabatic
driving. In particular, we find the instantaneous power of the
harmonic oscillator, as estimated by Eq. (14) for a given
eigenstate |ψ〉, reduces to

∂tC0 =
√

2m|ω̇|ω
√

〈ψ |x̂4|ψ〉 − 〈ψ |x̂2|ψ〉2. (17)

For the simple but indicative case of the ground state, this
expression can be easily evaluated, giving ψ(x) = 〈x|ψ〉 =
(mω

π�
)1/4 exp (−mωx2

2�
), and find 〈ψ |x̂4|ψ〉 = 3�

2/(4m2ω2) and
〈ψ |x̂2|ψ〉 = �/(2mω). Substituting these expressions into (17)
we finally arrive at

∂tC0 = �|ω̇|. (18)

If we employ a similar ramp to that used previously, ω(t) =
ω0 + ω1−ω0

2 {1 − cos [π(t−t0)
t1−t0

]}, we can integrate Eq. (18) for
t ∈ [t0,t1] and find

C0 = �(ω1 − ω0), (19)

where the simplicity of the results stems from the choice of
the state and the particular protocol.

B. Exigency: Lipkin-Meshkov-Glick model

We now move to examining another critical many-body
spin system, the Lipkin-Meshkov-Glick (LMG) model. A
particularly interesting aspect is that it has infinite range
interactions. It is therefore complementary to the short-range
nearest-neighbor Ising model previously studied. The LMG
model can be solved analytically using the Holstein-Primakoff
transformation [81]. The exact form of the counterdiabatic
term in the thermodynamic limit was calculated in Ref. [43],
shown to be nonlocal, and therefore the complexity associated
with engineering exact counterdiabatic driving terms was
linked to the closing energy gap near criticality. A means to
circumvent the requirement to implement the full correction
term was proposed, and it was found that significantly less re-
sources were required to achieve effective adiabatic dynamics
when far from criticality, while more refined correction terms
were needed approaching the critical point. In what follows,
we show through the use of the exigency this behavior in a
more rigorous and quantitative manner.

The LMG model in terms of collective spin operators Ŝα =∑
i σ̂

i
α/2 (where σ̂α are the usual Pauli operators) takes the

form

ĤLMG(t) = −2�

N

(
Ŝ2

x + γ Ŝ2
y

) − 2g(t)Ŝz. (20)

For the time-independent case, the LMG model has a second-
order quantum phase transition when g = �. To calculate the
exigency we first notice that

∂t ĤLMG = −2ġŜz, (21)
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FIG. 4. First derivative of the exigency, Eq. (14), when driving the
ground state of the LMG model through its quantum phase transition.
The curves are for increasingly large system sizes from the bottom:
N = 100 (bottom, purple continuous curve), N = 200 (red dashed
curve), N = 300 (green dotted-dashed curve), and N = 400 (blue
dotted curve). The topmost black thin continuous line is derived
from the HP mapping with N = 400. Inset: the second derivative
of the exigency. The pronounced dip that approaches the critical
point as system size increases is clearly visible. In both figures, τ =
(t − t0)/(t1 − t0) and (t1 − t0) = �−1

�.

which allows us to directly evaluate the derivative of the
exigency for pure states (see Appendix C) finding

∂tC0 = 2
√

2|ġ|
√

Var(Ŝz). (22)

It is immediately clear that ∂tC0 = 0 when ġ = 0 or Var(Ŝz) =
0. In fact, this result holds for any system where the driving
is applied to a global field. In Fig. 4, we show the behavior
of Eq. (22), evaluated when we drive the ground state using
the ramp g(t)/� = 3

4 + 1
4 {1 − cos [π(t−t0)

t1−t0
]} for which g = �

at t = 1
2 (t1 + t0). Clearly, the zero points at the start and end

of the ramp are due to ġ = 0. We see that as the system size
is increased, the need to apply the counterdiabatic field grows,
and does not appear to converge except for t larger than 1

2 (t1 +
t0). Furthermore, this need grows most significantly as we
approach the critical point, implying that the cost associated
with driving through the quantum phase transition diverges in
the thermodynamic limit.

Further insight can be found by exploiting the Holstein-
Primakoff (HP) approximation that allows us to analytically
treat the LMG (see Refs. [43,81] for details). This mapping
is exact in the thermodynamic limit, and provides an accurate
approximation for suitably large N . Setting γ = 0 for simplic-
ity and dropping the explicit time dependence and defining
g̃ = g/� for brevity, through Eq. (22) we find that ∂tC0 is
given by

∂tC0=
⎧⎨
⎩2|ġ|

√[
g̃ sinh2(α) + N(1−g̃2)

2 eα

]
, 0 < g̃ < 1

2|ġ| sinh(α), g̃ > 1

(23a)

(23b)

where tanh(α) = g̃2

2−g̃2 for 0 < g̃ < 1, tanh(α) = 1
2g̃−1 for g̃ >

1, and we have used the HP mapping (details provided in
Appendix D). When g̃ > 1 we see the exigency is independent
of the system size, however, for 0 < g̃ < 1 the need for a
driving term scales with increasing N . In Fig. 4, the solid

black line corresponds to Eq. (23). The approximation has
excellent agreement with the numerics until we approach the
critical point, where the mapping begins to break down for any
finite value of N .

A final interesting point is the behavior of the second
derivative of the exigency. In the inset of Fig. 4 we see a
divergence that is becoming increasingly more pronounced as
we approach the critical point for systems tending towards
the thermodynamic limit. We remark that this behavior is
equivalent to that of other figures of merit which signal the
emergence of critical behavior.

VI. CONCLUSIONS

Enhancing the work output of quantum engines is key
to designing future nanotechnologies. External fields for
counterdiabatic driving can increase the efficiency of thermal
machines by increasing the work extracted in the unitary
strokes. However, the effectiveness of this method strongly
depends on the cost of applying the external driving and on
the duration of the process. While a quantitative evaluation
is dependent on the particular experimental realization, in
general, at longer time scales the use of counterdiabatic driving
is detrimental because the energy required to generate the field
is larger than the energy gained from a quantum adiabatic
evolution. The cost of applying counterdiabatic driving can
be significantly reduced by choosing a selected form of
driving which depends on the first measurement of energy,
especially in systems close to a phase transition where the
exact external driving is particularly costly for states more
strongly affected by the transition. In future, optimizations
comparing perfect against approximate counterdiabatic driv-
ings and hybrid protocols that select perfect or approximate
drivings depending on the initial energy measurement could
be implemented for considerable energy savings especially as
quantum technologies are scaled up.
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APPENDIX A: CASE OF EIGHT SPINS

Here, we consider the illustrative case of eight spins for
the Ising model explicitly. In this scenario, the Hilbert space
comprises of 256 states, 128 each in the even or odd sector. In
the even sector, the possible values of the quasimomentum are
ke = ±π/8, ±3π/8, ±5π/8, ±7π/8, while in the odd sector
ko = 0, ±π/4, ±π/2, ±3π/4, π .

With a little computation, it becomes apparent that both
even and odd sectors of the Hamiltonian are further divided
into subblocks. This is due to the fact that in the basis spanned
by the operators c

†
k acting on their vacuum |v〉 (c†k|v〉 = 0
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for every k), only states differing by a pair of creation or
destruction operators ĉ

†
kĉ

†
−k are coupled dynamically.

For instance, one subblock of the even sector, which we
will refer to SA, is spanned by the 16 basis elements

SA

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|v〉,
p̂
†
1|v〉,p̂†

3,|v〉,p̂†
5|v〉,p̂†

7|v〉,
p̂
†
1p̂

†
3|v〉,p̂†

1p̂
†
5|v〉,p̂†

1p̂
†
7|v〉,p̂†

3p̂
†
5|v〉,p̂†

3p̂
†
7|v〉,p̂†

5p̂
†
7|v〉,

p̂
†
1p̂

†
3p̂

†
5|v〉,p̂†

1p̂
†
3p̂

†
7|v〉,p̂†

1p̂
†
5p̂

†
7|v〉,p̂†

3p̂
†
5p̂

†
7|v〉,

p̂
†
1p̂

†
3p̂

†
5p̂

†
7|v〉,

where we have adopted the notation p̂
†
j = ĉ

†
jπ

8

ĉ
†
− jπ

8

.

Another block, SB , is formed by single states that are
completely uncoupled to any other state (for example,
ĉ
†
π
8
ĉ
†
3π
8
ĉ
†
5π
8
ĉ
†
7π
8
|v〉) because no pair p̂

†
j can be added to or be

removed from it. By simple combinatorics, it is apparent
that there are 16 such states in the even sector. For example,
ĉ
†
π
8
ĉ
†
− 3π

8
ĉ
†
− 5π

8
ĉ
†
7π
8
|v〉 is also one such state that can be obtained

combinatorially.
A qualitatively intermediate scenario occurs in the sub-

blocks SC . For example, one subblock of SC could contain the
states that are spanned by ĉ

†
π
8
ĉ
†
3π
8
|v〉, ĉ

†
π
8
ĉ
†
3π
8
p̂
†
5|v〉, ĉ

†
π
8
ĉ
†
3π
8
p̂
†
7|v〉,

ĉ
†
π
8
ĉ
†
3π
8
p̂
†
5p̂

†
7|v〉. There are 24 such subblocks in the even sector

of the Hamiltonian that are of a similar structure (for example,
another group of four coupled states is given by ĉ

†
− 3π

8
ĉ
†
7π
8
|v〉,

ĉ
†
− 3π

8
p̂
†
5ĉ

†
7π
8
|v〉, p̂

†
1ĉ

†
− 3π

8
ĉ
†
7π
8
|v〉, p̂

†
1ĉ

†
− 3π

8
p̂
†
5ĉ

†
7π
8
|v〉).

Now, putting it all together, we find that the subblock SA

has 16 states, all the subblocks of type SB have a total of 16
states, while there are a total of 96 states in the subblocks of
type SC . The sum of all these states is indeed 128 as expected.
A similar scenario unravels in the odd sector.

It is now clear that if the first energy measurement selects
a state in any of the SB subblocks, no transitionless driving
is needed because the states in SB are invariant during
the time evolution. If instead the measurement selects an
eigenstate of the subblock SA, then, in order to keep the
evolution transitionless, it will be necessary to apply ĤI,W =
P̂e[

∑
k f (k,t)�̂†

k σ̂
y

k �̂k]P̂e with k given by all the possible ke.
Lastly, for a state in SC , it would be sufficient to drive only two
values of k (which specific values of k to be driven depends
on which pairs are involved in the subblock). For instance, in
the example above, k = 5π/8 and 7π/8 are needed.

APPENDIX B: TIME EVOLUTION OF A DIAGONAL
DENSITY MATRIX IN THE INSTANTANEOUS BASIS OF

THE HAMILTONIAN

Here, we furbish the details in deriving Eq. (13). Assuming
that the series expansion of ρ̂(t + dt) converges for sufficiently
small dt , we write

ρ̂(t + dt) =
∑

n

dnρ̂(t)

dtn

dtn

n!
.

From here, using

dρ̂(t)

dt
= − i

�
[Ĥ0(t),ρ̂(t)]

we obtain the higher derivatives of ρ̂, for instance,

d2ρ̂

dt2
= − 1

�2
[Ĥ0,[Ĥ0,ρ̂]] − i

�

[
dĤ0

dt
,ρ̂

]
(B1)

and

d3ρ̂

dt3
= i

�3
[Ĥ0,[Ĥ0,[Ĥ0,ρ̂]]] − i

�

[
d2Ĥ0

dt2
,ρ̂

]

− 1

�2

{[
Ĥ0,

[
dĤ0

dt
,ρ̂

]]
+ 2

[
dĤ0

dt
,[Ĥ0,ρ̂]

]}
. (B2)

Hence, it follows that if the n − 1 derivatives of Ĥ0 commute
with ρ̂, then the lowest-order correction in dt to the time
evolution of ρ̂ will be given by Eq. (13) in the main text.

APPENDIX C: EXIGENCY FOR THE LMG MODEL

Here, we detail the calculation to arrive at Eq. (22) in the
main text. Assuming the state we wish to drive is ρ̂ = |ψ〉〈ψ |,

∂tC0 = ‖[ρ̂,∂t ĤLMG]‖
= ‖ρ̂(−2ġŜz) − (−2ġŜz)ρ̂‖

= 2|ġ|
√

Tr[(Ŝzρ̂ − ρ̂Ŝz)(ρ̂Ŝz − Ŝzρ̂)]

= 2|ġ|
√

Tr
[
Ŝzρ̂2Ŝz − Ŝzρ̂Ŝzρ̂ − ρ̂Ŝzρ̂Ŝz + ρ̂Ŝ2

z ρ̂
]

= 2
√

2|ġ|
√

Tr
[
ρ̂2Ŝ2

z − Ŝzρ̂Ŝzρ̂
]

= 2
√

2|ġ|
√

〈ψ |Ŝ2
z |ψ〉 − 〈ψ |Ŝz|ψ〉2

= 2
√

2|ġ|
√

Var(Ŝz).

APPENDIX D: EXIGENCY FOR THE LMG MODEL:
HOLSTEIN PRIMAKOFF APPROXIMATION

Here, we outline the steps required in order to derive
Eqs. (23), with γ = 0 for simplicity. This requires us to
calculate Eq. (22) using the Holstein-Primakoff (HP) transfor-
mation. For suitably large N , we map the spin operators into
the creation and annihilation operators a and a† of a harmonic
oscillator

Ŝx =
√

N

2
(â + â†), (D1)

Ŝz = N

2
− â†â. (D2)

Following the Supplemental Material of [43], when g̃ > 1 the
HP transformation is always taken along Ŝz. In order to map
the LMG model to the harmonic oscillator, we are required to
perform a Bogoliubov transformation

a = sinh

(
α

2

)
b† + cosh

(
α

2

)
b, (D3)

a† = sinh

(
α

2

)
b + cosh

(
α

2

)
b†, (D4)
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with tanh α = 1
2g̃−1 . Therefore, to calculate the required

expectation value, we must write â†â in terms of b̂ and b̂†,
and calculate the expectation value over the ground state.
It is readily found that the only term (other than constants)
contributing is proportional to b̂2b̂†2. As such, we find that the
variance of Ŝz is

Var(Ŝz) = 1
2 sinh2 (α). (D5)

Substituting into Eq. (22), we arrive at Eq. (23b):

∂tC0 = 2|ġ| sinh(α). (D6)

A similar, albeit more involved, calculation is required for
0 < g̃ < 1. In this case, the direction along which the HP
transformation must be taken changes with the value of g̃. In
this case, the operator of which we must calculate the variance
of is

Ŝϕ
z = Ŝz cos ϕ + Ŝx sin ϕ, (D7)

with cos ϕ = g̃. Once again, we express Ŝ
ϕ
z in terms of b̂ and b̂†

with tanh α = g̃2

2−g̃2 , and calculate the expectation value over
the ground state. We now find that the only terms contributing
are constants, and terms proportional to b̂b̂† and b̂2b̂†2. After
some manipulation, we find

Var
(
Ŝϕ

z

) =
{

g̃

2
sinh2(α) + N (1 − g̃2)

4

×
[

sinh

(
α

2

)
+ cosh

(
α

2

)]2}

=
[
g̃

2
sinh2(α) + N (1 − g̃2)

4
eα

]
. (D8)

Substituting into Eq. (22) we arrive at Eq. (23a):

∂tC0 = 2|ġ|
√[

g̃ sinh2(α) + N
(
1 − g̃2

)
2

eα

]
. (D9)
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