723 research outputs found

    Kondo effect of an adsorbed cobalt phthalocyanine (CoPc) molecule: the role of quantum interference

    Full text link
    A recent experimental study showed that, distorting a CoPc molecule adsorbed on a Au(111) surface, a Kondo effect is induced with a temperature higher than 200 K. We examine a model in which an atom with strong Coulomb repulsion (Co) is surrounded by four atoms on a square (molecule lobes), and two atoms above and below it representing the apex of the STM tip and an atom on the gold surface (all with a single, half-filled, atomic orbital). The Hamiltonian is solved exactly for the isolated cluster, and, after connecting the leads (STM tip and gold), the conductance is calculated by standard techniques. Quantum interference prevents the existence of the Kondo effect when the orbitals on the square do not interact (undistorted molecule); the Kondo resonance shows up after switching on that interaction. The weight of the Kondo resonance is controlled by the interplay of couplings to the STM tip and the gold surface, and between the molecule lobes.Comment: 5 pages, 3 figura

    Switching the sign of photon induced exchange interactions in semiconductor microcavities with finite quality factors

    Full text link
    We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity with a finite quality factor. The lowest cavity mode and the quantum dot exciton are coupled forming a polariton, whereas excitons interact with localized spins via exchange. The finite quality of the cavity Q is incorporated in the model Hamiltonian by adding an imaginary part to the photon frequency. The Hamiltonian, which treats photons, spins and excitons quantum mechanically, is solved exactly. Results for a single polariton clearly demonstrate the existence of a resonance, sharper as the temperature decreases, that shows up as an abrupt change between ferromagnetic and antiferromagnetic indirect anisotropic exchange interaction between localized spins. The origin of this spin-switching finite-quality-factor effect is discussed in detail remarking on its dependence on model parameters, i.e., light-matter coupling, exchange interaction between impurities, detuning and quality factor. For parameters corresponding to the case of a (Cd,Mn)Te quantum dot, the resonance shows up for Q around 70 and detuning around 10 meV. In addition, we show that, for such a quantum dot, and the best cavities actually available (quality factors better than 200) the exchange interaction is scarcely affected.Comment: 7 figures, submitted to PR

    Conductance through an array of quantum dots

    Full text link
    We propose a simple approach to study the conductance through an array of NN interacting quantum dots, weakly coupled to metallic leads. Using a mapping to an effective site which describes the low-lying excitations and a slave-boson representation in the saddle-point approximation, we calculated the conductance through the system. Explicit results are presented for N=1 and N=3: a linear array and an isosceles triangle. For N=1 in the Kondo limit, the results are in very good agreement with previous results obtained with numerical renormalization group (NRG). In the case of the linear trimer for odd NN, when the parameters are such that electron-hole symmetry is induced, we obtain perfect conductance G0=2e2/hG_0=2e^2/h. The validity of the approach is discussed in detail.Comment: to appear in Phys. Rev.

    Classical trajectories in quantum transport at the band center of bipartite lattices with or without vacancies

    Full text link
    Here we report on several anomalies in quantum transport at the band center of a bipartite lattice with vacancies that are surely due to its chiral symmetry, namely: no weak localization effect shows up, and, when leads have a single channel the transmission is either one or zero. We propose that these are a consequence of both the chiral symmetry and the large number of states at the band center. The probability amplitude associated to the eigenstate that gives unit transmission ressembles a classical trajectory both with or without vacancies. The large number of states allows to build up trajectories that elude the blocking vacancies explaining the absence of weak localization.Comment: 5 pages, 5 figure

    Fractional Aharonov-Bohm effect in mesoscopic rings

    Full text link
    We study the effects of correlations on a one dimensional ring threaded by a uniform magnetic flux. In order to describe the interaction between particles, we work in the framework of the U \infty Hubbard and tt-JJ models. We focus on the dilute limit. Our results suggest the posibility that the persistent current has an anomalous periodicity ϕ0/p\phi_{0}/p, where pp is an integer in the range 2pNe2\leq p\leq N_{e} (NeN_{e} is the number of particles in the ring and ϕ0\phi_{0} is the flux quantum). We found that this result depends neither on disorder nor on the detailed form of the interaction, while remains the on site infinite repulsion.Comment: 14 pages (Revtex), 5 postscript figures. Send e-mail to: [email protected]

    Pyrazolium- versus imidazolium-based ionic liquids: Structure, dynamics and physicochemical properties

    Get PDF
    Ionic liquids (ILs) composed of two different pyrazolium cations with dicyanamide and bis(trifluoromethanesulfonyl)imide anions have been synthesized and characterized by NMR, Kamlet-Taft solvatochromic parameters, conductivity and rheological measurements, as well as ab initio calculations. Density functional calculations for the two pyrazolium cations, 1-butyl-2- methylpyrazolium [bmpz] and 1-butyl-2,3,5-trimethylpyrazolium [bm 3pz], provide a full picture of their conformational states. Homo- and heteronuclear NOE show aggregation motives sensitive to steric hindrance and the anions' nature. Self-diffusion coefficients D for the anion and the cation have been measured by pulsed field gradient spin-echo NMR (PGSE-NMR). The ionic diffusivity is influenced by their chemical structure and steric hindrance, giving the order Dcation > Danion for all of the examined compounds. The measured ion diffusion coefficients, viscosities, and ionic conductivity follow the Vogel-Fulcher-Tammann (VFT) equation for the temperature dependencies, and the best-fit parameters have been determined. Solvatochromic parameters indicate an increased ion association upon going from bis(trifluoromethanesulfonyl)imide to dicyanamide-based pyrazolium salts, as well as specific hydrogen bond donor capability of H atoms on the pyrazolium ring. All of these physical properties are compared to those of an analogous series of imidazolium-based ILs

    Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight

    Full text link
    Despite a wealth of fossils of Mesozoic birds revealing evidence of plumage and other soft-tissue structures, the epidermal and dermal anatomy of their wing’s patagia remain largely unknown. We describe a distal forelimb of an enantiornithine bird from the Lower Cretaceous limestones of Las Hoyas, Spain, which reveals the overall morphology of the integument of the wing and other connective structures associated with the insertion of flight feathers. The integumentary anatomy, and myological and arthrological organization of the new fossil is remarkably similar to that of modern birds, in which a system of small muscles, tendons and ligaments attaches to the follicles of the remigial feathers and maintains the functional integrity of the wing during flight. The new fossil documents the oldest known occurrence of connective tissues in association with the flight feathers of birds. Furthermore, the presence of an essentially modern connective arrangement in the wing of enantiornithines supports the interpretation of these primitive birds as competent fliersSupport and funds were provided by the projects CGL2009-1183 BTE and CGL-2013-42643-P, Juntas de Comunidades de Castilla-La Mancha and by donations from Mrs. Gretchen Augustyn to the Dinosaur Institute of the Natural History Museum of Los Angeles Count

    Persistent currents in diffusive metallic cavities: Large values and anomalous scaling with disorder

    Full text link
    The effect of disorder on confined metallic cavities with an Aharonov-Bohm flux line is addressed. We find that, even deep in the diffusive regime, large values of persistent currents may arise for a wide variety of geometries. We present numerical results supporting an anomalous scaling law of the average typical current with the strength of disorder ww, wγ \sim w^{- \gamma} with γ<2\gamma < 2. This is contrasted with previously reported results obtained for cylindrical samples where a scaling w2 \sim w^{-2} has been found. Possible links to, up to date, unexplained experimental data are finally discussed.Comment: 5 pages, 4 figure
    corecore