121 research outputs found

    Alternative Linear Chiral Models for Nuclear Matter

    Get PDF
    The equation of state of a family of alternative linear chiral models in the mean field approximation is discussed. We investigate the analogy between some of these models with current models in the literature, and we show that it is possible to reproduce very well the saturation properties of nuclear matter.Comment: 11 pages in Latex, 4 ps figures include

    Hadronic Entropy Enhancement and Low Density QGP

    Get PDF
    Recent studies show that for central collisions the rising of the incident energy from AGS to RHIC decreases the value of the chemical potential in the Hadron-QGP phase diagram. Thus, the formation of QGP at RHIC energies in central collisions may be expected to occur at very small values of the chemical potential. Using many different relativistic mean-field hadronic models (RMF) at this regime we show that the critical temperature for the Hadron-QGP transition is hadronic model independent. We have traced back the reason for this and conclude that it comes from the fact that the QGP entropy is much larger than the hadronic entropy obtained in all the RMF models. We also find that almost all of these models present a strong entropy enhancement in the hadronic sector coming from the baryonic phase transition to a nucleon-antinucleon plasma. This result is in agreement with the recent data obtained in the STAR collaboration at RHIC where it was found a rich proton-antiproton matter

    Derivative-Coupling Models and the Nuclear-Matter Equation of State

    Get PDF
    The equation of state of saturated nuclear matter is derived using two different derivative-coupling Lagrangians. We show that both descriptions are equivalent and can be obtained from the sigma-omega model through an appropriate rescaling of the coupling constants. We introduce generalized forms of this rescaling to study the correlations amongst observables in infinite nuclear matter, in particular, the compressibility and the effective nucleon mass.Comment: 16 pages, 6 figures, 36 kbytes. To appear in Zeit. f. Phys. A (Hadrons and Nuclei

    Neutron Star Constraints on the H Dibaryon

    Get PDF
    We study the influence of a possible H dibaryon condensate on the equation of state and the overall properties of neutron stars whose population otherwise contains nucleons and hyperons. In particular, we are interested in the question of whether neutron stars and their masses can be used to say anything about the existence and properties of the H dibaryon. We find that the equation of state is softened by the appearance of a dibaryon condensate and can result in a mass plateau for neutron stars. If the limiting neutron star mass is about that of the Hulse-Taylor pulsar a condensate of H dibaryons of vacuum mass 2.2 GeV and a moderately attractive potential in the medium could not be ruled out. On the other hand, if the medium potential were even moderately repulsive, the H, would not likely exist in neutron stars. If neutron stars of about 1.6 solar mass were known to exist, attractive medium effects for the H could be ruled out. Certain ranges of dibaryon mass and potential can be excluded by the mass of the Hulse-Taylor pulsar which we illustrate graphically.Comment: Revised by the addition of a figure showing the region of dibaryon mass and potential excluded by the Hulse-Taylor pulsar. 18 pages, 11 figures, latex (submitted to Phys. Rev. C

    QCD Sum Rules for ÎŁ\Sigma Hyperons in Nuclear Matter

    Full text link
    Within finite-density QCD sum-rule approach we investigate the self-energies of ÎŁ\Sigma hyperons propagating in nuclear matter from a correlator of ÎŁ\Sigma interpolating fields evaluated in the nuclear matter ground state. We find that the Lorentz vector self-energy of the ÎŁ\Sigma is similar to the nucleon vector self-energy. The magnitude of Lorentz scalar self-energy of the ÎŁ\Sigma is also close to the corresponding value for nucleon; however, this prediction is sensitive to the strangeness content of the nucleon and to the assumed density dependence of certain four-quark condensate. The scalar and vector self-energies tend to cancel, but not completely. The implications for the couplings of ÎŁ\Sigma to the scalar and vector mesons in nuclear matter and for the ÎŁ\Sigma spin-orbit force in a finite nucleus are discussed.Comment: 20 pages in revtex, 6 figures available under request as ps files, UMD preprint #94--11

    MYORG-related disease is associated with central pontine calcifications and atypical parkinsonism

    Get PDF
    Objective: To identify the phenotypic, neuroimaging, and genotype-phenotype expression of MYORG mutations. Methods: Using next-generation sequencing, we screened 86 patients with primary familial brain calcification (PFBC) from 60 families with autosomal recessive or absent family history that were negative for mutations in SLC20A2, PDGFRB, PDGBB, and XPR1. In-depth phenotyping and neuroimaging investigations were performed in all cases reported here. Results: We identified 12 distinct deleterious MYORG variants in 7 of the 60 families with PFBC. Overall, biallelic MYORG mutations accounted for 11.6% of PFBC families in our cohort. A heterogeneous phenotypic expression was identified within and between families with a median age at onset of 56.4 years, a variable combination of parkinsonism, cerebellar signs, and cognitive decline. Psychiatric disturbances were not a prominent feature. Cognitive assessment showed impaired cognitive function in 62.5% of cases. Parkinsonism associated with vertical nuclear gaze palsy was the initial clinical presentation in 1/3 of cases and was associated with central pontine calcifications. Cerebral cortical atrophy was present in 37% of cases. Conclusions: This large, multicentric study shows that biallelic MYORG mutations represent a significant proportion of autosomal recessive PFBC. We recommend screening MYORG mutations in all patients with primary brain calcifications and autosomal recessive or negative family history, especially when presenting clinically as atypical parkinsonism and with pontine calcification on brain CT

    Locked-in syndrome after basilary artery thrombosis by mucormycosis masquerading as meningoencephalitis in a lymphoma patient

    Get PDF
    Locked-in syndrome is a rare clinical syndrome due to basilary artery thrombosis generally associated with trauma, vascular, or cardiac malformation. It can present as various types of clinical evolution and occasionally masquerades as other pathological conditions, such as infective meningoencephalitis. These complications are the cause of diagnostic delay, if not promptly recognised, followed by patient death. We report the case of a 42-year-old female with a systemic B and cutaneous T-cell non-Hodgkin\u2019s lymphoma, with a severe neutropenia lasting over a year, who eventually developed a rapid and fatal fungal mucormycosis sepsis following a skin infection on her right arm, associated with locked-in syndrome and meningoencephalitis
    • …
    corecore