658 research outputs found

    Automated Quantification of Human Alpha Rhythm

    Get PDF
    This thesis seeks to quantify human alpha rhythm in order to obtain better measures to test theoretical models of neurodynamics, with potential clinical applications for the method of identification. An automated algorithm is developed in Chapter 2 to facilitate collection of objective data from an expanded alpha band (4–14 Hz) in a large number of subjects. This method avoids subjective bias inherent to traditional visual identification of the alpha activity, produced multiple peak information (if multiple peaks exist) that is absent in qEEG measures, and uses information from multiple electrode sites to eliminate spurious peaks. This method is tested and validated on 100 subjects. In addition to traditional measures of alpha activities such as the frequency and amplitude, further measures were devised to better quantify the alpha rhythm and its spatial characteristics. Background spectra in the alpha range are also characterized. In Chapter 3 the algorithm is applied to a large (1498 subjects) database of normal healthy subjects of approximately equal number in each sex, as well as a large span in age (6–86 years), in order to establish typical parameter ranges. Analysis is done comparing the age and the topological trends that are known variants in the alpha rhythm. Investigations are also performed to test for potential sex differences and/or lateralities. Key results are that double alpha peaks are resolved in a large proportion of the subjects ( 50%), while single alpha peak cases are likely to be double-peak cases in which the two peaks are not resolved. Age trends in measures of alpha activity show increase of alpha frequency from childhood to adolescence, a plateau in adulthood, and a slight decline in old age; a decrease in alpha amplitude in old age is also observed. These findings are consistent with previous literature and provide better statistics. Topological distribution of the alpha activity on the head is also explored, with little lateral asymmetry observed. No statistically significant differences between the sexes are found. The C++ code that was developed and utilized in this thesis is included in Appendix B. It is provided on disk and is available online. A study carried out on the same group of subjects to determine age-related trends of EEG parameters produced by model fitting is included in Appendixes C, to provide a comparison between the methods and highlights corresponding results

    Strategic highlights of Taiwan's people-centered New Southbound Policy

    Get PDF
    For more about the East-West Center, see http://www.eastwestcenter.org/Alan H. Yang and Jeremy Chiang, Executive Director and Managing Editor at the Taiwan-Asia Exchange Foundation, respectively, explain that "While the "Go South" policies concentrated on economic cooperation and state-owned-enterprise (SOE) investments, the NSP seeks deeper socio-economic connectivity between Taiwan and its neighboring communities.

    Women, sport and gender politics in Taiwan

    Get PDF
    In 2016, Tsai Ing-wen became the first woman to be elected President of Taiwan (Republic of China). The extent to which this indicated a major shift in the country’s gender politics remains to be seen. However, analysis of the status of women in the field of sport in Taiwan offers interesting insights into the island’s gender power balance. This chapter examines the degree to which Taiwanese female athletes have been able to emerge as sporting heroes of the nation and the ways in which the Taiwan media represent the relationship between women and sport more generally. Although evidence of change can be found, the overall impression is that sporting women, as both participants and fans, continue to struggle for parity of esteem with their male counterparts

    Inflammation produces catecholamine resistance in obesity via activation of PDE3B by the protein kinases IKKε and TBK1.

    Get PDF
    Obesity produces a chronic inflammatory state involving the NFκB pathway, resulting in persistent elevation of the noncanonical IκB kinases IKKε and TBK1. In this study, we report that these kinases attenuate β-adrenergic signaling in white adipose tissue. Treatment of 3T3-L1 adipocytes with specific inhibitors of these kinases restored β-adrenergic signaling and lipolysis attenuated by TNFα and Poly (I:C). Conversely, overexpression of the kinases reduced induction of Ucp1, lipolysis, cAMP levels, and phosphorylation of hormone sensitive lipase in response to isoproterenol or forskolin. Noncanonical IKKs reduce catecholamine sensitivity by phosphorylating and activating the major adipocyte phosphodiesterase PDE3B. In vivo inhibition of these kinases by treatment of obese mice with the drug amlexanox reversed obesity-induced catecholamine resistance, and restored PKA signaling in response to injection of a β-3 adrenergic agonist. These studies suggest that by reducing production of cAMP in adipocytes, IKKε and TBK1 may contribute to the repression of energy expenditure during obesity. DOI: http://dx.doi.org/10.7554/eLife.01119.001

    A four dukkha state-space model for hand tracking

    Get PDF
    In this paper, we propose a hand tracking method which was inspired by the notion of the four dukkha: birth, aging, sickness and death (BASD) in Buddhism. Based on this philosophy, we formalize the hand tracking problem in the BASD framework, and apply it to hand track hand gestures in isolated sign language videos. The proposed BASD method is a novel nature-inspired computational intelligence method which is able to handle complex real-world tracking problem. The proposed BASD framework operates in a manner similar to a standard state-space model, but maintains multiple hypotheses and integrates hypothesis update and propagation mechanisms that resemble the effect of BASD. The survival of the hypothesis relies upon the strength, aging and sickness of existing hypotheses, and new hypotheses are birthed by the fittest pairs of parent hypotheses. These properties resolve the sample impoverishment problem of the particle filter. The estimated hand trajectories show promising results for the American sign language

    The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin

    Full text link
    Insulin stimulates glucose transport by promoting exocytosis of the glucose transporter Glut4 (refs 1, 2). The dynamic processes involved in the trafficking of Glut4-containing vesicles, and in their targeting, docking and fusion at the plasma membrane, as well as the signalling processes that govern these events, are not well understood. We recently described tyrosine-phosphorylation events restricted to subdomains of the plasma membrane that result in activation of the G protein TC10 (refs 3, 4). Here we show that TC10 interacts with one of the components of the exocyst complex, Exo70. Exo70 translocates to the plasma membrane in response to insulin through the activation of TC10, where it assembles a multiprotein complex that includes Sec6 and Sec8. Overexpression of an Exo70 mutant blocked insulin-stimulated glucose uptake, but not the trafficking of Glut4 to the plasma membrane. However, this mutant did block the extracellular exposure of the Glut4 protein. So, the exocyst might have a crucial role in the targeting of the Glut4 vesicle to the plasma membrane, perhaps directing the vesicle to the precise site of fusion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62982/1/nature01533.pd

    Determining Physical Constraints in Transcriptional Initiation Complexes Using DNA Sequence Analysis

    Get PDF
    Eukaryotic gene expression is often under the control of cooperatively acting transcription factors whose binding is limited by structural constraints. By determining these structural constraints, we can understand the “rules” that define functional cooperativity. Conversely, by understanding the rules of binding, we can infer structural characteristics. We have developed an information theory based method for approximating the physical limitations of cooperative interactions by comparing sequence analysis to microarray expression data. When applied to the coordinated binding of the sulfur amino acid regulatory protein Met4 by Cbf1 and Met31, we were able to create a combinatorial model that can correctly identify Met4 regulated genes. Interestingly, we found that the major determinant of Met4 regulation was the sum of the strength of the Cbf1 and Met31 binding sites and that the energetic costs associated with spacing appeared to be minimal

    Multiple margins: sport, gender and nationalism in Taiwan

    Get PDF
    This article aims to build contextualized and cross-cultural understandings of gender discourses on sport and nationalism. With its multi-colonized history and its multi-ethnic groups, modern Taiwan has a very different ‘national’ story from most western societies. The way that sport is articulated with Taiwanese nationalism is also unique. With the Taiwanese being desperate for every chance to prove their existence and worth, sport becomes an important field for constructing national honour and identity. When sportswomen succeed on the international stage, especially where their male counterparts fail, the discourse on women, sport and nationalism becomes unusual. In sum, the unique character of Taiwanese sport nationalism creates empowerment opportunities for female athletes. But we should bear in mind that men still take the dominant roles in Taiwan's sport field. Gendered disciplinary discourses, such as the beauty myth and compulsory heterosexuality, still dominate Taiwanese female athletes' media representation and further influence their practice and self-identity

    Position specific variation in the rate of evolution in transcription factor binding sites

    Get PDF
    BACKGROUND: The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. RESULTS: Here we analyse the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikatae to study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artefacts of computational motif finding algorithms. CONCLUSION: As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative sequence data in the identification of transcription factor binding sites and is an important step toward understanding the evolution of functional non-coding DNA

    MONKEY: identifying conserved transcription-factor binding sites in multiple alignments using a binding site-specific evolutionary model

    Get PDF
    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding-site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function
    corecore