11 research outputs found

    Homeostatic Plasticity Studied Using In Vivo Hippocampal Activity-Blockade: Synaptic Scaling, Intrinsic Plasticity and Age-Dependence

    Get PDF
    Homeostatic plasticity is thought to be important in preventing neuronal circuits from becoming hyper- or hypoactive. However, there is little information concerning homeostatic mechanisms following in vivo manipulations of activity levels. We investigated synaptic scaling and intrinsic plasticity in CA1 pyramidal cells following 2 days of activity-blockade in vivo in adult (postnatal day 30; P30) and juvenile (P15) rats. Chronic activity-blockade in vivo was achieved using the sustained release of the sodium channel blocker tetrodotoxin (TTX) from the plastic polymer Elvax 40W implanted directly above the hippocampus, followed by electrophysiological assessment in slices in vitro. Three sets of results were in general agreement with previous studies on homeostatic responses to in vitro manipulations of activity. First, Schaffer collateral stimulation-evoked field responses were enhanced after 2 days of in vivo TTX application. Second, miniature excitatory postsynaptic current (mEPSC) amplitudes were potentiated. However, the increase in mEPSC amplitudes occurred only in juveniles, and not in adults, indicating age-dependent effects. Third, intrinsic neuronal excitability increased. In contrast, three sets of results sharply differed from previous reports on homeostatic responses to in vitro manipulations of activity. First, miniature inhibitory postsynaptic current (mIPSC) amplitudes were invariably enhanced. Second, multiplicative scaling of mEPSC and mIPSC amplitudes was absent. Third, the frequencies of adult and juvenile mEPSCs and adult mIPSCs were increased, indicating presynaptic alterations. These results provide new insights into in vivo homeostatic plasticity mechanisms with relevance to memory storage, activity-dependent development and neurological diseases

    A mapping label required for normal scale of body representation in the cortex.

    No full text
    The neocortical primary somatosensory area (S1) consists of a map of the body surface. The cortical area devoted to different regions, such as parts of the face or hands, reflects their functional importance. Here we investigated the role of genetically determined positional labels in neocortical mapping. Ephrin-A5 was expressed in a medial > lateral gradient across S1, whereas its receptor EphA4 was in a matching gradient across the thalamic ventrobasal (VB) complex, which provides S1 input. Ephrin-A5 had topographically specific effects on VB axon guidance in vitro. Ephrin-A5 gene disruption caused graded, topographically specific distortion in the S1 body map, with medial regions contracted and lateral regions expanded, changing relative areas up to 50% in developing and adult mice. These results provide evidence for within-area thalamocortical mapping labels and show that a genetic difference can cause a lasting change in relative scale of different regions within a topographic map.Journal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Research Support, U.S. Gov't, P.H.S.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Development and plasticity of cortical areas and networks

    No full text
    corecore